• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

밀도에 무관한 클러스터링 기법의 개선 (Improvement on Density-Independent Clustering Method)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
7 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2017.05
7P 미리보기
밀도에 무관한 클러스터링 기법의 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 21권 / 5호 / 967 ~ 973페이지
    · 저자명 : 김성훈, 허경용

    초록

    클러스터링은 균일한 특성을 가지는 데이터를 클러스터로 묶기 위해 사용되는 비교사 학습 방법 중 하나로 다양한 응용에 사용되고 있으며 FCM(Fuzzy C-Means)이 대표적인 방법 중 하나이다. 하지만 FCM에서 주로 사용되는 유클리드 거리 척도는 밀도가 높은 클러스터가 클러스터링 결과에 많은 영향을 미쳐 밀도가 높은 쪽으로 클러스터의 중심을 위치시키는 문제가 있으며, 이를 해결하기 위한 방법 중 하나가 클러스터 중심 사이의 거리가 가능한 멀어지도록 하는 밀도 무관 클러스터링이다. 하지만 밀도 무관 클러스터링 역시 클러스터 중심 사이의 거리를 정확히 제어하기가 어렵다. 이 논문에서는 클러스터 중심 사이의 거리가 멀어지도록 할뿐만이 아니라 클러스터 중심이 밀도가 높은 곳에 위치하도록 하는 항을 추가한 개선된 밀도 무관 클러스터링 방법을 제안한다. 제안하는 방법은 FCM이나 밀도 무관 클러스터링에 비해 실제 클러스터 중심으로 수렴하는 경우가 더 많다는 것을 실험 결과를 통해 확인할 수 있다.

    영어초록

    Clustering is one of the most well-known unsupervised learning methods that clusters data into homogeneous groups. Clustering has been used in various applications and FCM is one of the representative methods. In Fuzzy C-Means(FCM), however, cluster centers tend leaning to high density areas because the Euclidean distance measure forces high density clusters to make more contribution to clustering result. Previously proposed was density-independent clustering method, where cluster centers were made not to be close each other and relived the center deviation problem. Density-independent clustering method has a limitation that it is difficult to specify the position of the cluster centers. In this paper, an enhanced density-independent clustering method with an additional term that makes cluster centers to be placed around dense region is proposed. The proposed method converges more to real centers compared to FCM and density-independent clustering, which can be verified with experimental results.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 07일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:27 오후