• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

디스크립터 자동 할당을 위한 저자키워드의 재분류에 관한 실험적 연구 (A Study on the Reclassification of Author Keywords for Automatic Assignment of Descriptors)

22 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2012.06
22P 미리보기
디스크립터 자동 할당을 위한 저자키워드의 재분류에 관한 실험적 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 29권 / 2호 / 225 ~ 246페이지
    · 저자명 : 김판준, 이재윤

    초록

    본 연구는 국내 주요 학술 DB의 검색서비스에서 제공되고 있는 저자키워드(비통제키워드)의 재분류를 통하여 디스크립터(통제키워드)를 자동 할당할 수 있는 가능성을 모색하였다. 먼저 기계학습에 기반한 주요 분류기들의 특성을 비교하는 실험을 수행하여 재분류를 위한 최적 분류기와 파라미터를 선정하였다. 다음으로, 국내 독서 분야 학술지 논문들에 부여된 저자키워드를 학습한 결과에 따라 해당 논문들을 재분류함으로써 키워드를 추가로 할당하는 실험을 수행하였다. 또한 이러한 재분류 결과에 따라 새롭게 추가된 문헌들에 대하여 통제키워드인 디스크립터와 마찬가지로 동일 주제의 논문들을 모아주는 어휘통제 효과가 있는지를 살펴보았다. 그 결과, 저자키워드의 재분류를 통하여 디스크립터를 자동 할당하는 효과를 얻을 수 있음을 확인하였다.

    영어초록

    This study purported to investigate the possibility of automatic descriptor assignment using the reclassification of author keywords in domestic scholarly databases. In the first stage, we selected optimal classifiers and parameters for the reclassification by comparing the characteristics of machine learning classifiers. In the next stage, learning the author keywords that were assigned to the selected articles on readings, the author keywords were automatically added to another set of relevant articles. We examined whether the author keyword reclassifications had the effect of vocabulary control just as descriptors collocate the documents on the same topic. The results showed the author keyword reclassification had the capability of the automatic descriptor assignment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:04 오전