• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정 (Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory)

11 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2014.03
11P 미리보기
Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 17권 / 1호 / 80 ~ 90페이지
    · 저자명 : 박진우, 이정수

    초록

    본 연구는 강원대학교 학술림을 대상으로 조사한 42개 표본점의 재적정보와 Landsat TM 영상으로 추출한 Remote Sensing(RS)정보를 이용하여 잣나무임분의 재적을 추정하는 것을 목표로 한다. 실험 대상 학술림 잣나무림의 ha당 평균재적은 307.7㎥/ha, 표준편차는 168.4㎥/ha이며 산출된 잣나무림 재적을 등급화하였다. TM 영상에 3 by 3 majority filtering을 수행하기 전과 후에 각각 11개의 지수를 추출하였으며, 지수별 평균 화소 값을 이용하여 선형 회귀식 도출에 필요한 독립변수를 선정하였다. 11개의 지수는 6개의 DN(밴드값, 열감지밴드인 Band6을 제외), NDVI(정규식생지수), Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness(TC G) 1개로 구성하였다. 그 결과, 필터링 전과 후 모두 NDVI와 TC G가 회귀식에 가장 적합한 지수로 선정되었으며, 는 필터링 전과 후가 각각 0.736, 0.753로 모두 높았다. 또한, 정확도 비교를 위하여 오차검증을 실시한 결과, RMSE는 필터링 전과 후가 각각 약 69.1㎥/ha, 약 67.5㎥/ha으로 필터링 후가 낮았으며, bias는 각각 약 -12.8㎥/ha, 약 9.7㎥/ha으로 필터링 후의 편차가 적어 필터링을 실시한 회귀식이 적합한 모형으로 선정되었다. 필터링 후의 회귀식을 적용하여 추정한 임반별 재적은 총 재적이 약 160,947㎥이며, 평균 재적은 약 315㎥/ha로 실제 잣나무림의 재적보다 약 1.2배 높게 추정되었다.

    영어초록

    The objective of this research is to estimate the stand volume of Pinus koraiensis, by using the investigated volume and the information of remote sensing(RS), in the research forest of Kangwon National University. The average volume of the research forest per hectare was 307.7㎥/ha and standard deviation was 168.4㎥/ha. Before and after carrying out 3 by 3 majority filtering on TM image, eleven indices were extracted each time. Independent variables needed for linear regression equation were selected using mean pixel values by indices. The number of indices were eleven: six Bands(except for thermal Band), NDVI, Band Ratio(BR1:Band4/Band3, BR2:Band5/ Band4, BR3:Band7/Band4), Tasseled Cap-Greeness. As a result, NDVI and TC G were chosen as the most suitable indices for regression before and after filtering, and R-squared was high: 0.736 before filtering, 0.753 after filtering. As a result of error verification for an exact comparison, RMSE before and after filtering was about 69.1㎥/ha, 67.5㎥/ha, respectively, and bias was -12.8㎥/ha, 9.7㎥/ha, respectively. Therefore, the regression conducted with filtering was selected as an appropriate model because of low RMSE and bias. The estimated stand volume applying the regression was 160,758㎥, and the average volume was 314㎥/ha. This estimation was 1.2 times higher than the actual stand volume of Pinus koraiensis.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:31 오전