• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘 (A MapReduce-based kNN Join Query Processing Algorithm for Analyzing Large-scale Data)

8 페이지
기타파일
최초등록일 2025.04.25 최종저작일 2015.04
8P 미리보기
대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 42권 / 4호 / 504 ~ 511페이지
    · 저자명 : 이현조, 김태훈, 장재우

    초록

    최근 모바일 기술의 발달 및 소셜 네트워크 서비스의 활성화를 통해 사용자 데이터가 급격히증대되고 있다. 이에 따라 대용량 데이터에 대한 효율적인 데이터 분석 기법에 대한 연구가 활발히 이루어지고 있다. 대표적인 대용량 데이터 분석 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. 데이터집합 R, S에 대해, VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의처리를 수행하기 때문에, 대용량 데이터에 대한 join 질의처리 시간을 감소시키는 장점이 존재한다. 그러나 VkNN-join은 보로노이 다이어그램을 사용하기 때문에, 색인 구축 비용이 높은 단점이 존재한다. 아울러 kNN 질의처리를 위한 후보 영역선정 시 k값에 비례하여 후보영역의 크기가 증가하기 때문에, kNN 연산 오버헤드가 증가하는 문제점이존재한다. 이를 해결하기 위해 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 질의처리 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 절감한다. 또한 시드 간 평균 거리를 기반으로 질의 처리 후보 영역을 선정함으로써, kNN-join 질의를위한 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 보인다.

    영어초록

    Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzingthe large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:50 오전