PARTNER
검증된 파트너 제휴사 자료

인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정 (Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge)

11 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2014.12
11P 미리보기
인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 34권 / 6호 / 1655 ~ 1665페이지
    · 저자명 : 옥수열, 문현수, 전방조, 임윤묵

    초록

    구조물의 변위이력은 구조물의 전체적인 거동을 나타내는 인자의 시간에 대한 이력이므로 이를 추정하는 것은 매우 중요하며, 일반적으로 구조물의 상태를 평가하는데 있어 직관적으로 신뢰할 수 있는 물리량이다. 특히, 교량의 경우 차량 하중에 의해 발생되는 수직 변위를 알아내는 것은교량에 발생할 수 있는 문제점을 미연에 확인할 수 있어 매우 중요한 부분이다. 하지만 시공된 교량의 수직 변위를 측정하는 것은 실험여건 및 장비의 제약조건 등으로 인해서 직접적으로 측정하는 것이 매우 힘든 실정이다. 본 연구에서는 대상 교량들에 대한 제약조건을 극복하고 변위응답을 추정할 수 있는 방안을 제시하기 위해 임의의 차량하중에 의해서 측정되는 변형률과 변위를 인공신경망에 적용하였다. 인공신경망에 적용하는 축방향 변형률과 수직방향 변위에 대한 학습 자료를 획득하기 위해서 수치해석을 수행하였으며, 실제 교통 상황을 반영하기 위해서 교량을 통과하는 차량의 종류와 차간 거리에 대한 차량이동하중 시나리오를 작성하여 시공된 교량의 실제 교통상황에 따른 차량 이동 하중이 가해지도록모델링하였다. 인공신경망을 이용한 학습 결과에 따라 임의의 하중에 의해 발생되는 교량의 변형률에 대한 변위를 추정하였고, 인공신경망을 사용하여 추정된 변위 결과가 수치해석을 통한 변위를 잘 표현하는 것을 확인하였다.

    영어초록

    Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN.
    Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:59 오전