• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

한글 마이크로블로그 텍스트의 감정 분류 및 분석 (Classification and Analysis of Emotion in Korean Microblog Texts)

9 페이지
기타파일
최초등록일 2025.04.21 최종저작일 2013.06
9P 미리보기
한글 마이크로블로그 텍스트의 감정 분류 및 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 40권 / 3호 / 159 ~ 167페이지
    · 저자명 : 이철성, 최동희, 김성순, 강재우

    초록

    지금까지 국내에서는 우리말을 이용하여 긍・부정을 판단하는 감성분석연구(sentiment analysis)가 주를 이뤘고, 여러 감정으로 분류하는 감정분석연구(emotion analysis)는 진행되지 않았다. 이에 본 연구에서는 한글 문서를 기반으로 기계학습 모델을 적용하여 7개의 감정으로 분류하고 그 결과를 영화평에 적용하여 영화 장르별 감정특성을 분석하였다. 본 연구에 적용한 기계학습 모델 중 ‘다항 네이브 베이즈(Multinomial Naive Bayes) 모델이 가장 높은 정확도를 보였다. 이 모델을 ‘네이버 40자 영화평’에 적용하여 영화 100편에 해당하는 영화평의 감정을 분류하고, 요인분석(factor analysis)하였다. 그 결과, ‘생동감’과 ‘우울’이 상반되는 감정임을 알 수 있었고, 영화평에 나타난 ‘친근감’은 영화의 평점에 긍정적인 영향을 미치고, ‘분노’, ‘혼란’, ‘피로감’은 부정적인 영향을 미치는 것으로 나타났다. 반면에 ‘생동감’과 ‘우울’은 영화의 평점에 영향을 미치지 않은 것으로 나타났다. 또한, 단일감정을 특성으로 하는 4개의 장르 즉, 공포-‘긴장감’, 코미디-‘생동감’, 멜로/애정/로맨스-‘친근감’, 범죄-‘혼란’이 영화 장르별 감정 특성으로 나타났다. 트위터(Twitter)로부터 수집한 데이터를 이용하여 ‘네이버 40자 영화평’에 적용한 이번 연구는 데이터의 성격을 넘어, 본 연구에서 제안한 방법이 실제 응용분야에서 적용 가능함을 보여준다.

    영어초록

    Recent studies in Korean sentiment analysis mostly focus on binary classification such as ‘positive’ or ‘negative’. However, there are few researches have discussed on emotion analysis which involves classifying opinions into multiple categories. In this paper, we have developed machine learning models based on Korean document and applied these classifiers to movie reviews to extract emotional features of various movie genres. We used Multinominal Naive Bayes model which shows best classification accuracy. Employing this model, we performed factor analysis on the movie review dataset distributed by “Naver” for 100 movies. The experimental result shows that ‘vigor’ and ‘depression’ are opposite emotions. Meanwhile, ‘friendliness’ positively influences on movie rating, by contrast, ‘anger’, ‘confusion’ and ‘fatigue’ affect negatively. Also we have found 4 movie genres which has single emotional feature as follows: horror-‘anxiety’, comedy-‘vigor’, romance/love-‘friendliness’ and crime-‘confusion’. Finally, cross-corpus evaluation using “Twitter” and “Naver” movie review dataset demonstrates that our proposed method can be applicable in practical applications over various data attributes.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:28 오후