• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

GNSS 가강수량과 기상인자의 상호 연관성 분석 (Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors)

8 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2015.08
8P 미리보기
GNSS 가강수량과 기상인자의 상호 연관성 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국측량학회
    · 수록지 정보 : 한국측량학회지 / 33권 / 4호 / 317 ~ 324페이지
    · 저자명 : 김재섭, 배태석

    초록

    초 록GNSS 기상학은 1980년 중반 기상 분야에 활용 가능성이 제기된 후, 전 세계적으로 실용화 가능성이 입증되고 있으며, 현재 기상현업에 활용하기 위한 연구가 활발히 진행되고 있다. GNSS 신호의 대류권 지연오차에 기반하여 산출한 가강수량은 대기 중 수증기량을 나타낸 것으로, 기후 모니터링, 기후의 변화 탐지 등 다양한 기상현상 분석에 많이 사용되고 있다. 본 연구에서는 2014년 2월 울산에 내린 폭설현상 분석을 위해 GNSS 상시관측소와 자동기상관측장치에서 제공하는 기상관측 정보를 이용하여 가강수량을 산출하였다. 산출 과정 중 중요한 파라미터인 가중 평균 기온식은 송동섭의 모델을 적용하였다(Song, 2009a). 연구기간은 폭설이 발생한 2014년 2월과 폭설이 발생하지 않은 2013년 2월의 총 56 일이다. 2014년 2월 가강수량의 평균은 11.29mm로 산출 되었으며, 폭설이 발생한 2월 9일부터 12일까지 평균 가강수량은 10.14mm로 전체 평균값보다 11.34% 낮은 값을 보였다. 폭설이 내리지 않은 2013년 2월 가강수량의 평균은 10.34mm로2014년 평균보다 8.41% 낮은 값을 보였다. 또한 가강수량 외 AWS에서 제공하는 다른 기상인자들과 비교하여 폭설 현상에 대한 분석을 수행하였다. 그 결과 Magnus 경험식을 통해 산출한 포화수증기압 경우 GNSS 가강수량과 0.29의 낮은 상관성을 나타내었다. 또한 기상인자의 종류(강설, 강우)에 따라 가강수량의 증감패턴이 다르게 나타났으며, 강수량이 발생하기 평균 6.5시간 전에 가강수량 값이 급격히 증가한 후 감소하는 경향을 확인할 수 있었다. 이를 통해 GNSS 가강수량패턴분석이 강수량 전조현상 분석에 유효할 것으로 판단된다.

    영어초록

    GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국측량학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:41 오후