• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정 (The Determination of Probability Distributions of Annual, Seasonal and Monthly Precipitation in Korea)

12 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2010.06
12P 미리보기
우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정
  • 미리보기

    서지정보

    · 발행기관 : 한국농림기상학회
    · 수록지 정보 : 한국농림기상학회지 / 12권 / 2호 / 83 ~ 94페이지
    · 저자명 : 김동엽, 임상준, 이상호, 홍영주, 이은재

    초록

    본 연구의 목적은 우리나라의 연 강수량, 계절 강수량 그리고 월 강수량의 최적 확률분포형을 선정하는것이다. 이를 위해서 전국 32개의 강우 관측소에서 얻은 자료에 대하여 L-모멘트 비 다이어그램과 평균가중거리 값을 이용하여 각 강수량별 최적 확률분포를 산정하였으며, 최종적으로 선정된 최적 확률분포형을 관측 지점별로 적합도 검정을 실시하였다. 그 결과, 연강수량에서는 3변수 Weibull 분포(W3), 봄과 가을에는 3변수 대수정규분포(LN3), 여름과 겨울에는 일반화된 극치분포(GEV)가 관측값에 가장 잘 적합하는 것으로 나타났다. 또한, 월 강수량에서는 1월은 LN3, 2월과 7월은 W3, 3월은 2변수 Weibull 분포(W2), 4월,9월, 10월, 11월은 일반화된 Pareto 분포(GPA), 5월과 6월은 GEV, 그리고 8월과 12월은 log-Pearson type III 분포(LP3)가 가장 잘 적합하였다. 하지만, 최적 확률분포형의 지점별 적합도 검정의 결과, 1월, 4월, 9월, 10월, 11월의 GPA와 LN3에 대한 기각율이 확률분포의 매개변수 추정에서의 오류와 상대적으로 높은AWD 값으로 인하여 매우 높게 나타났다. 한편, 23개관측소의 자료를 추가하여 분석해본 결과 기존의 32개의 관측소 자료를 이용한 것과 큰 차이를 나타내지 않았다. 종합적으로 보다 적합한 확률분포형을 선정하기 위해서는 더 장기간의 표본자료를 이용한 추가적인연구가 필요할 것으로 판단된다.

    영어초록

    The objective of this study was to determine the best probability distributions of annual, seasonal and monthly precipitation in Korea. Data observed at 32 stations in Korea were analyzed using the Lmoment ratio diagram and the average weighted distance (AWD) to identify the best probability distributions of each precipitation. The probability distribution was best represented by 3-parameter Weibull distribution (W3) for the annual precipitation, 3-parameter lognormal distribution (LN3) for spring and autumn seasons, and generalized extreme value distribution (GEV) for summer and winter seasons. The best probability distribution models for monthly precipitation were LN3 for January, W3 for February and July, 2-parameter Weibull distribution (W2) for March, generalized Pareto distribution (GPA) for April, September, October and November, GEV for May and June, and log-Pearson type III (LP3) for August and December. However, from the goodness-of-fit test for the best probability distributions of the best fit, GPA for April, September, October and November, and LN3 for January showed considerably high reject rates due to computational errors in estimation of the probability distribution parameters and relatively higher AWD values. Meanwhile, analyses using data from 55 stations including additional 23 stations indicated insignificant differences to those using original data. Further studies using more long-term data are needed to identify more optimal probability distributions for each precipitation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국농림기상학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 26일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:24 오후