• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

레이저 열화상 기법과 CNN 딥러닝을 이용한 용접부 표면의 자동 균열 검출 기술 개발 (Development of Automatic Crack Detection Technology in Welded Surface using Laser Active Thermography and CNN Deep Learning)

11 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2020.06
11P 미리보기
레이저 열화상 기법과 CNN 딥러닝을 이용한 용접부 표면의 자동 균열 검출 기술 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국비파괴검사학회
    · 수록지 정보 : 비파괴검사학회지 / 40권 / 3호 / 163 ~ 173페이지
    · 저자명 : 김치성, 황순규, 정준연, 손훈

    초록

    본 연구에서는 레이저 열화상 시스템과 균열 검출 알고리즘 개발을 통해 용접부에서 균열을 자동 검출하는 기술을 연구하였다. 레이저 열화상 시스템은 레이저 가진으로 인해 균열부에서 발생하는 열파 집중 현상을 관측하도록 구성되었다. 균열 검출 알고리즘은 (1) 온도 분포 특성을 이용한 열화상 이미지 병합으로 균열을 가시화하고, (2) 과적합을 방지하는 input 이미지 생성과 (3) CNN 딥러닝을 통해 균열부의 특징을 분석, 분류하여, (4) 원본 열화상 이미지에 균열의 위치를 Masking 한다. SUS 시험편 2개로 개발 기술을 검증하였고, 현미경과 액체침투법으로 확인한 실제 균열 정보와 비교하였다. 시험편 #1의 균열 이미지 618 개와 정상 이미지 1834개로 CNN 을 훈련시켰다. 시험편 #1과 #2의 총 9개 영역을 각 300개의 Test 이미지로 나눠 훈련된 알고리즘 성능을 검증해본 결과, 총 균열 14개 중 13개를 검출하였고, 정상 이미지 4개가 과검출되었다. 따라서 개발된 알고리즘은 용접부에서 용접의 복잡한 패턴과 구별하여 균열을 검출할 수 있다.

    영어초록

    In this study, automatic crack detection for welded surfaces was studied through the development of a laser active thermography system and a crack detection algorithm. The laser active thermography system observes thermal wave concentrations in the crack while exciting the surface of the weld. The crack detection algorithm (1) visualizes the cracks by merging the infrared (IR) images using the temperature distribution characteristics; (2) employs input image generation with a specific method to prevent overfitting; (3) analyzes and classifies the characteristics of the cracks using a deep learning convolutional neural network (CNN); and (4) marks the location of the cracks in the original IR image. The system and algorithm were verified using two SUS specimens (#1 and #2) and compared with actual crack data obtained by microscopy and penetration test. The CNN was trained with 618 images of cracks and 1834 images of intact specimen #1. For performance verification, a total of nine areas of specimens #1 and #2 were divided into 300 test images; 13 out of 14 cracks were detected while four intact images were overdetecte d. Thus, the developed algorithm can detect cracks in welded surfaces by distinuishing them from complex patterns of welding.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“비파괴검사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 13일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:39 오후