• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

교량 손상 관리를 위한 딥러닝 기반의 교량이미지 전처리 및 손상객체 자동검출 모델 (A Deep Learning-based Bridge Image Pretreatment and Damaged Objects Automatic Detection Model for Bridge Damage Management)

15 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2021.10
15P 미리보기
교량 손상 관리를 위한 딥러닝 기반의 교량이미지 전처리 및 손상객체 자동검출 모델
  • 미리보기

    서지정보

    · 발행기관 : 차세대컨버전스정보서비스학회
    · 수록지 정보 : 차세대컨버전스정보서비스기술논문지 / 10권 / 5호 / 497 ~ 511페이지
    · 저자명 : 홍성삼, 황철훈, 김형규, 김병곤

    초록

    교량에서 표면 결함은 가능한 구조적 열화 또는 손상의 가장 관찰 가능한 지표이다. 그러나 대부분 인력에 의한 수동적인 검사로 지표를 생성하고 있는데 이는 구조 요소의 내부 상태는 시각적 기술에만 의존하여 평가될 수 없다는 점과 수동적인 촬영, 직관에 의한 판단만이 평가 요소인 점이 문제점으로 지적된다. 본 논문에서는 교량 손상 점검의 자동화를 위해 딥러닝 기반의 이미지 전처리 및 교량 손상 객체 자동화 기술을 제안한다. 이기종의 촬영기기로 촬영된 교량 이미지의 전처리를 위해 딥러닝 기반의 SR(Super-Resolution)을 이용하여 up/down-sampling을 통해 탐지모델에 가장 적합한 형태의 이미지로 정규화를 하는 기술을 제안하였다. 처리된 이미지는 레이블러를 통해 레이블링 되고, 구축된 이미지넷이 탐지모델의 학습에 사용되어 현장에 최적화된 교량 손상 객체 탐지 모델을 구축할 수 있다. 또한 기존의 교량 손상 탐지 모델들과 성능적으로 유사하거나 우수한 성능을 나타내었으며, 전문현장 데이터를 사용하였기 때문에 모델의 신뢰성을 확보할 수 있었다. 실험을 통해 교량 손상 객체 중 백태에 대한 탐지 성능을 측정하였으며, 전처리된 이미지넷을 활용한 경우 성능이 개선되는 것을 확인할 수 있었다.

    영어초록

    Surface defects in bridges are the most observable indicators of possible structural degradation or damage. However, most of them generate indicators through passive inspections by manpower. This method is pointed out as a problem that the internal state of the structural element cannot be evaluated solely on visual technology, and that only passive photographing and intuition judgment are evaluation elements. In this paper, deep learning-based image preprocessing and bridge damage object automation technology are proposed for automation of bridge damage inspection. For preprocessing of bridge images photographed with heterogeneous photographing devices, a technology for normalizing into images of the most suitable form for detection models through up/down-sampling using deep learning-based SR (Super-Resolution) was proposed. The processed image is labeled through the labeler, and the constructed image net is used for learning the detection model to build a bridge damage object detection model optimized for the field. In addition, it showed similar or excellent performance to the existing bridge damage detection models, and because professional field data were used, the reliability of the model could be secured. Through the experiment, it was confirmed that the detection performance of white pollack among bridge damaged objects was measured, and the performance was improved when the preprocessed image net was used.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“차세대컨버전스정보서비스기술논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:44 오전