• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

레스토랑 카테고리와 온라인 소비자 리뷰를 이용한 딥러닝 기반 레스토랑 추천 시스템 개발 (Developing a Deep Learning-based Restaurant Recommender System Using Restaurant Categories and Online Consumer Review)

20 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.02
20P 미리보기
레스토랑 카테고리와 온라인 소비자 리뷰를 이용한 딥러닝 기반 레스토랑 추천 시스템 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국경영정보학회
    · 수록지 정보 : 경영정보학연구 / 25권 / 1호 / 27 ~ 46페이지
    · 저자명 : 구하은, LI QINGLONG, 김재경

    초록

    최근에는 외식 산업의 발달과 레스토랑 수요의 증가로 인해 레스토랑 추천 시스템 연구가 활발하게제안되고 있다. 기존 레스토랑 추천 시스템 연구는 정량적인 평점 정보 또는 온라인 리뷰의 감성분석을통해 소비자의 선호도 정보를 추출하였는데 이는 소비자의 의미론적 선호도 정보는 반영하지 못한다는한계가 존재한다. 또한, 레스토랑이 포함하는 세부적인 속성을 반영한 추천 시스템 연구는 부족한실정이다. 이를 해결하기 위해 본 연구에서는 소비자의 선호도와 레스토랑 속성 간의 상호작용을효과적으로 학습할 수 있는 딥러닝 기반 모델을 제안하였다. 먼저, 합성곱 신경망을 온라인 리뷰에적용하여 소비자의 의미론적 선호도 정보를 추출했고, 레스토랑 정보에 임베딩 기법을 적용하여레스토랑의 세부적인 속성을 추출했다. 최종적으로 요소별 연산을 통해 소비자 선호도와 레스토랑속성 간의 상호작용을 학습하여 소비자의 선호도 평점을 예측했다. 본 연구에서 제안한 모델의 추천성능을 평가하기 위해 Yelp.com의 온라인 리뷰를 사용한 실험 결과, 기존 연구의 다양한 모델과 비교했을때 본 연구의 제안 모델이 우수한 추천 성능을 보이는 것을 확인하였다. 본 연구는 레스토랑 산업의빅데이터를 활용한 맞춤형 레스토랑 추천 시스템을 제안함으로써 레스토랑 연구 분야와 온라인 서비스제공자에게 학술적 및 실무적 측면에서 다양한 시사점을 제공할 수 있을 것으로 기대한다.

    영어초록

    Research on restaurant recommender systems has been proposed due to the development of the food service industry and the increasing demand for restaurants. Existing restaurant recommendation studies extracted consumer preference information through quantitative information or online review sensitivity analysis, but there is a limitation that it cannot reflect consumer semantic preference information. In addition, there is a lack of recommendation research that reflects the detailed attributes of restaurants.
    To solve this problem, this study proposed a model that can learn the interaction between consumer preferences and restaurant attributes by applying deep learning techniques. First, the convolutional neural network was applied to online reviews to extract semantic preference information from consumers, and embedded techniques were applied to restaurant information to extract detailed attributes of restaurants.
    Finally, the interaction between consumer preference and restaurant attributes was learned through the element-wise products to predict the consumer preference rating. Experiments using an online review of Yelp.com to evaluate the performance of the proposed model in this study confirmed that the proposed model in this study showed excellent recommendation performance. By proposing a customized restaurant recommendation system using big data from the restaurant industry, this study expects to provide various academic and practical implications.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“경영정보학연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:14 오전