• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝과 의미론적 분할 기법을 이용한 각막궤양 영역 검출 (Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning)

12 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2022.09
12P 미리보기
딥러닝과 의미론적 분할 기법을 이용한 각막궤양 영역 검출
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 27권 / 9호 / 1 ~ 12페이지
    · 저자명 : 임진혁, 김대원

    초록

    안과 환자의 질병을 판단하기 위해서는 특수 촬영 장비를 통해 찍은 안구영상을 이용한 안과의사의주관적 판단의 개입이 전통적으로 활용되고 있다. 본 연구에서는 안과 의료진이 질병을 판단할 때보조적 도움이 될 수 있도록 객관적 진단결과를 제시해주는 각막궤양 의미론적 분할방법에 대하여제안하였다. 이를 위해 DeepLab 모델을 활용하였고 그 중 Backbone network으로 Xception과 ResNet 네트워크를 이용하였다. 실험결과를 나타내기 위한 평가지표로 다이스 유사계수와 IoU 값을 이용하였고ResNet101 네트워크를 사용하였을 때 ‘crop & resized’ 이미지에 대해 최대 평균 정확도 93%의 다이스유사계수 값을 보였다. 본 연구는 객체 검출을 위한 의미론적 분할모델 또한 안구의 각막궤양 부분과같은 불규칙하고 특이한 모양을 추출하고 분류하는데 뛰어난 결과를 도출할 수 있는 성능을 보유하고있음을 보여주었다. 향후 학습용 Dataset을 양적으로 보강하여 실험결과의 정확도를 제고할 수 있도록하고 실제 의료진단 환경에서 구현되어 사용되어 질 수 있도록 할 계획이다.

    영어초록

    Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when ‘crop & resized’ images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 10일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:43 오후