• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

드론 영상의 YOLO 딥러닝 기법 적용을 통한 개인형 이동장치 탐지 (Personal Mobility Detection through Application of YOLO Deep Learning Algorithm to Drone Images)

8 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.08
8P 미리보기
드론 영상의 YOLO 딥러닝 기법 적용을 통한 개인형 이동장치 탐지
  • 미리보기

    서지정보

    · 발행기관 : 한국측량학회
    · 수록지 정보 : 한국측량학회지 / 41권 / 4호 / 239 ~ 246페이지
    · 저자명 : 김준석, 이태현, 염준호

    초록

    최근 단거리 교통수단으로 개인형 이동장치와 이를 사용하는 사용자의 이용률이 빠르게 증가하고 있다. 또한, 현대도시의 소비 형태가 공유경제의 형태로 변화하며 관련 공유 플랫폼이 개발됨에 따라 개인형 이동장치인 PM(Personal Mobility)이 공유 전동킥보드 형태로 나타났으며, 이와 동시에 공유 PM 서비스를 제공하는 업체도 같이 증가하고 있다. 그러나 PM이 서비스 제공 업체마다 종류가 다르고, 지역마다 그 업체의 수가 달라 통합적인 관리가 더욱 어려운 상황이다. 따라서 본 논문에서는 드론을 통해 수집한 영상에서 YOLOv3 알고리즘으로 여러 업체의 PM 객체를 탐지하여, 통합적인 관리의 활용 가능성이 있는지 분석하고 정확도 평가를 수행하였다. 실험지역 내 PM이 포함된 드론 영상을 수집하고 PM 객체를 레이블링하여 딥러닝 모델을 학습시켜 PM을 탐지하였다. 정확도 평가 결과 재현율 80%, 정밀도 87%의 탐지 정확도와 0.73의 AP값을 얻었으며 이를 통해 드론 영상에서 YOLOv3 알고리즘을 활용하여 PM 검출을 수행하는 것이 가능함을 확인하였다.

    영어초록

    Recently, the utilization rate of PM (Personal Mobility) and its users has been rapidly increasing as a short distance transportation option. As the consumption patterns in modern cities shift towards the sharing economy, various shared mobility platforms have been developed, leading to the emergence of PM in the form of shared electric scooters. Consequently, there has been a simultaneous increase in companies providing shared PM services. However, due to the diverse types of shared PM offered by different service providers and variations in the number of providers across regions, the comprehensive management of PMs has become more challenging. Therefore, this paper aims to evaluate the feasibility of utilizing the YOLOv3 algorithm to detect shared PM objects from drone images and to assess accuracy, thereby verifying the potential for integrated PM management of PMs. PM images within the experimental area were collected using drones, and individual objects were labeled to train a deep learning model for PM detection. Subsequently, an accuracy evaluation was conducted to validate the feasibility of the approach. The experimental results demonstrated 80% recall and 87% precision accuracy, and an AP (average precision) value of 0.73, confirming the viability of utilizing the YOLOv3 algorithm on drone images for PM detection.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:11 오전