• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발 (Analyzing Students’ Non-face-to-face Course Evaluation by Topic Modeling and Developing Deep Learning-based Classification Model)

25 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2021.11
25P 미리보기
토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국문헌정보학회
    · 수록지 정보 : 한국문헌정보학회지 / 55권 / 4호 / 267 ~ 291페이지
    · 저자명 : 한지영, 허고은

    초록

    2020년 신종 코로나바이러스 감염증(코로나19)으로 인한 전 세계적인 팬데믹으로 교육 현장에도 큰 변화가 있었다. 대학에서는 보조 교육 수단으로 생각했던 원격수업을 전면 도입하였고 비대면 수업이 일상화되어 교수자와 학생들은 새로운 교육환경에 적응하기 위해 큰 노력을 기울이고 있다. 이러한 변화 속에서 비대면 강의의 질적 향상을 위하여 강의 만족도 영향요인에 관한 연구가 필요하다. 본 연구는 코로나 전과 후로 변화된 대학 강의 만족도 영향요인을 파악하기 위해 빅데이터를 활용한 새로운 방법론을 제시하고자 한다. 토픽 모델링을 활용하여 코로나 전과 후의 강의평을 분석하고 이를 통해 강의 만족도 영향요인을 파악하여 대학교육이 나아가야 할 방향성을 제언하였다. 또한, 딥러닝 언어 모델인 KoBERT를 기반으로 0.84의 F1-score를 보이는 토픽 분류 모델을 구축함으로써 강의의 만족, 불만족 요인을 다각도로 파악할 수 있으며 이를 통해 강의 만족도의 지속적인 질적 향상에 기여할 수 있다.

    영어초록

    Due to the global pandemic caused by COVID-19 in 2020, there have been major changes in the education sites. Universities have fully introduced remote learning, which was considered as an auxiliary education, and non-face-to-face classes have become commonplace, and professors and students are making great efforts to adapt to the new educational environment. In order to improve the quality of non-face-to-face lectures amid these changes, it is necessary to study the factors affecting lecture satisfaction. Therefore, This paper presents a new methodology using big data to identify the factors affecting university lecture satisfaction changed before and after COVID-19. We use Topic Modeling method to analyze lecture reviews before and after COVID-19, and identify factors affecting lecture satisfaction. Through this, we suggest the direction for university education to move forward. In addition, we can identify the factors of satisfaction and dissatisfaction of lectures from multiangle by establishing a topic classification model with an F1-score of 0.84 based on KoBERT, a deep learning language model, and further contribute to continuous qualitative improvement of lecture satisfaction.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국문헌정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:35 오전