• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SVM과 딥러닝에서 불완전한 데이터를 처리하기 위한 알고리즘 (Algorithms for Handling Incomplete Data in SVM and Deep Learning)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2020.03
7P 미리보기
SVM과 딥러닝에서 불완전한 데이터를 처리하기 위한 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국융합학회
    · 수록지 정보 : 한국융합학회논문지 / 11권 / 3호 / 1 ~ 7페이지
    · 저자명 : 이종찬

    초록

    본 논문은 불완전한 데이터를 처리하기 위해 2가지의 서로 다른 기법과 이를 학습하는 알고리즘을 소개한다. 첫째방법은 손실변수가 가질 수 있는 균등한 확률로 손실값을 할당하여 불완전한 데이터를 처리하고, SVM 알고리즘으로 이 데이터를 학습하는 것이다. 이 기법은 임의의 변수에 손실 값의 빈도가 높을수록 엔트로피가 높도록 하여 이 변수가 결정트리에서 선택되지 않도록 하는 것이다. 이 방법은 손실 변수에 남아있는 정보를 모두 무시하고 새로운 값을 할당한다는 특징이 있다. 이에 반해 새로운 방법은 손실 값을 제외하고 남아있는 정보로 엔트로피 확률을 구하고 이를 손실 변수의 추정 값으로 사용하는 것이다. 즉, 불완전한 학습데이터로부터 소실되지 않은 많은 정보들을 이용해 소실된 일부 정보를 복구하고 딥러닝을 이용해 학습한다. 이 2가지 방법은 학습데이터에서 차례로 변수 하나를 선택하고, 이 변수에 손실된 데이터의 비율을 달리하면서 서로 다른 측정값들의 결과들과 반복적으로 비교함으로써 성능을 측정한다.

    영어초록

    This paper introduces two different techniques for dealing with incomplete data and algorithms for learning this data. The first method is to process the incomplete data by assigning the missing value with equal probability that the missing variable can have, and learn this data with the SVM. This technique ensures that the higher the frequency of missing for any variable, the higher the entropy so that it is not selected in the decision tree. This method is characterized by ignoring all remaining information in the missing variable and assigning a new value. On the other hand, the new method is to calculate the entropy probability from the remaining information except the missing value and use it as an estimate of the missing variable. In other words, using a lot of information that is not lost from incomplete learning data to recover some missing information and learn using deep learning. These two methods measure performance by selecting one variable in turn from the training data and iteratively comparing the results of different measurements with varying proportions of data lost in the variable.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국융합학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:21 오전