PARTNER
검증된 파트너 제휴사 자료

CBIR 기반 데이터 확장을 이용한 딥 러닝 기술 (CBIR-based Data Augmentation and Its Application to Deep Learning)

6 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2018.05
6P 미리보기
CBIR 기반 데이터 확장을 이용한 딥 러닝 기술
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 23권 / 3호 / 403 ~ 408페이지
    · 저자명 : 김세송, 정승원

    초록

    딥 러닝의 학습을 위해서 일반적으로 많은 양의 데이터가 필요하다. 그러나 많은 양의 데이터 세트를 만드는 것은 쉽지 않기 때문에, 회전, 반전 (flipping), 필터링 (filtering) 등의 간단한 데이터 확장 (data augmentation) 기법을 통해 작은 데이터 세트를 좀 더 큰 데이터 세트로 만드는 여러 시도들이 있었다. 그러나 이러한 기법들은 이미 보유하고 있는 데이터 세트만을 이용하기 때문에 확장성에 제약을 갖는다. 이런 문제를 해결하기 위해 본고에서는 보유하고 있는 영상 데이터를 이용하여 새로운 영상 데이터를 획득하는 기술을 제안한다. 이는 기존 데이터 세트의 영상 데이터를 CBIR(Contents based image retrieval)의 쿼리로 이용하여 유사 영상들을 검색하여 획득하는 방식으로 이루어진다. 최종적으로 CBIR을 이용해 확장한 데이터를 딥 러닝으로 학습시켜 확장 전후의 성능을 비교하였다.

    영어초록

    Generally, a large data set is required for learning of deep learning. However, since it is not easy to create large data sets, there are a lot of techniques that make small data sets larger through data expansion such as rotation, flipping, and filtering. However, these simple techniques have limitation on extendibility because they are difficult to escape from the features already possessed. In order to solve this problem, we propose a method to acquire new image data by using existing data. This is done by retrieving and acquiring similar images using existing image data as a query of the content-based image retrieval (CBIR). Finally, we compare the performance of the base model with the model using CBIR.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:35 오전