• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥 러닝 기반의 이미지와 비디오 압축 기술 분석 (A Technical Analysis on Deep Learning based Image and Video Compression)

12 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2018.05
12P 미리보기
딥 러닝 기반의 이미지와 비디오 압축 기술 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 23권 / 3호 / 383 ~ 394페이지
    · 저자명 : 조승현, 김연희, 임웅, 김휘용, 최진수

    초록

    본 논문에서는 최근 활발히 연구되고 있는 딥 러닝 기반의 이미지와 비디오 압축 기술에 대해 살펴본다. 딥 러닝 기반의 이미지 압축 기술은 심층 신경망에 압축 대상 이미지를 입력하고 반복적 또는 일괄적 방식으로 은닉 벡터를 추출하여 부호화한다. 이미지 압축 효율을 높이기 위해 심층 신경망은 복원 이미지의 화질은 높이면서 부호화된 은닉 벡터가 보다 적은 비트로 표현될 수 있도록 학습된다. 이러한 기술들은 특히 저 비트율에서 기존의 이미지 압축 기술에 비해 뛰어난 화질의 이미지를 생성할 수 있다. 한편, 딥 러닝 기반의 비디오 압축 기술은 압축 대상 비디오를 직접 입력하여 처리하기 보다는 기존 비디오 코덱의 압축 툴 성능을 개선하는 접근법을 취하고 있다. 본 논문에서 소개하는 심층 신경망 기술들은 최신 비디오 코덱의 인루프 필터를 대체하거나 추가적인 후처리 필터로 사용되어 복원 영상의 화질 개선을 통해 압축 효율을 향상시킨다. 마찬가지로, 화면 내 예측 및 부호화에 적용된 심층 신경망 기술들은 기존 화면 내 예측 툴과 함께 사용되어 예측 정확도를 높이거나 새로운 화면 내 부호화 과정을 추가함으로써 압축 효율을 향상 시킨다.

    영어초록

    In this paper, we investigate image and video compression techniques based on deep learning which are actively studied recently. The deep learning based image compression technique inputs an image to be compressed in the deep neural network and extracts the latent vector recurrently or all at once and encodes it. In order to increase the image compression efficiency, the neural network is learned so that the encoded latent vector can be expressed with fewer bits while the quality of the reconstructed image is enhanced. These techniques can produce images of superior quality, especially at low bit rates compared to conventional image compression techniques. On the other hand, deep learning based video compression technology takes an approach to improve performance of the coding tools employed for existing video codecs rather than directly input and process the video to be compressed. The deep neural network technologies introduced in this paper replace the in-loop filter of the latest video codec or are used as an additional post-processing filter to improve the compression efficiency by improving the quality of the reconstructed image. Likewise, deep neural network techniques applied to intra prediction and encoding are used together with the existing intra prediction tool to improve the compression efficiency by increasing the prediction accuracy or adding a new intra coding process.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 14일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:20 오전