• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

증강형 딥러닝 기반 미세먼지 예측 시스템 (Dust Prediction System based on Incremental Deep Learning)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2023.11
7P 미리보기
증강형 딥러닝 기반 미세먼지 예측 시스템
  • 미리보기

    서지정보

    · 발행기관 : 국제문화기술진흥원
    · 수록지 정보 : 문화기술의 융합 / 9권 / 6호 / 301 ~ 307페이지
    · 저자명 : 장성봉

    초록

    딥러닝은 심층신경망(Deep Neural Network)을 구축하고 대량의 훈련 데이터를 수집한 후, 구축된 신경망을 오랫동안 학습 시켜야 한다. 만약, 학습이 제대로 진행되지 않거나 과적합이 발생하면, 학습은 실패하게 된다. 현재까지 개발되고 있는 딥러닝 도구들을 사용할 경우, 훈련데이터 수집과 학습에 많은 시간이 소요된다. 하지만, 모바일 환경의 급격한 도래와 센서 데이터의 증가로 인해, 신경망 학습에 걸리는 시간을 획기적으로 줄일 수 있는 실시간 증강형 딥러닝 기술에 대한 요구가 급격하게 증가하고 있다. 본 연구에서는 미세먼지 센서를 장착한 아두이노 시스템을 사용하여 실시간 증강형 딥러닝 시스템을 구현 하였다. 구현된 시스템에서는 미세먼지 데이터를 5초마다 측정하고 최대 120개가 축적이 되면, 기존에 축적된 데이터와 새로이 축적된 데이터를 데이터셋으로 사용하여 학습을 수행하도록 하였다. 학습 수행을 위한 신경망은 입력층 1개, 은닉층 1개, 출력등 1개로 구성하였다. 구현된 시스템에 대한 성능을 평가하기 위해 학습 시간과 평균 제곱근 오차(root mean square error, RMSE)를 측정 하였다. 실험 결과, 평균 학습 오차는 0.04053796이었으며, 학습 주기당(1 에포크) 평균 학습 시간은 3,447 초 정도의 시간이 걸렸다.

    영어초록

    Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“문화기술의 융합”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:08 오후