• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템 (A Collaborative Video Annotation and Browsing System usingLinked Data)

17 페이지
기타파일
최초등록일 2025.04.15 최종저작일 2011.09
17P 미리보기
링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 17권 / 3호 / 203 ~ 219페이지
    · 저자명 : 이연호, 오경진, 신위살, 조근식

    초록

    최근 인터넷이 가능한 컴퓨터뿐만 아니라 스마트TV, 스마트폰과 같은 장치를 통한 동영상 형태의 멀티미디어 소비가 증가함에 따라 단순히 시청만 하는 것이 아니라 동영상 콘텐츠 사용자들은 자신이 원하는 동영상 콘텐츠를 찾거나 동영상 콘텐츠에 등장하는 객체의 부가 정보를 브라우징 하고자 하는 요구가 증대되고 있다. 이러한 사용자의 요구를 충족시키기 위해서는 노동집약적인 어노테이션 작업이 불가피하다. 동영상 콘텐츠에 등장하는 객체에 직접 부가정보를 기술하는 키워드 기반 어노테이션 연구에서는 객체에 대한 관련 정보들을 어노테이션 데이터에 모두 포함시켜 대용량 데이터를 개별적으로 직접 관리해야 한다. 이러한 어노테이션 데이터를 이용하여 브라우징을 할 때, 어노테이션 데이터에 이미 포함 되어 있는 정보만 제한적으로 검색이 된다는 단점을 가지고 있다. 또한, 기존의 객체 기반 어노테이션에서는 어노테이션 작업량을 줄이기 위해 객체 검출 및 인식, 트래킹 등의 컴퓨터 비전 기술을 적용한 자동 어노테이션을 시도하고 있다. 그러나 다양한 종류의 객체를 모두 검출해내고 인식하여, 자동으로 어노테이션을 하기에는 현재까지의 기술로는 큰 어려움이 있다. 이러한 문제점들을 극복하고자 본 논문에서는 비디오 어노테이션 모듈과 브라우징 모듈로 구성되는 시스템을 제안한다. 시맨틱 데이터에 접근하기 위해 링크드 데이터를 이용하여 다수의 어노테이션을 수행하는 사용자들이 협업적으로 동영상 콘텐츠에 등장하는 객체에 대한 어노테이션을 수행 할 수 있도록 하는 어노테이션 모듈이다. 첫 번째는 어노테이션 서버에서 관리되는 어노테이션 데이터는 온톨로지 형태로 표현하여 다수의 사용자가 어노테이션 데이터를 쉽게 공유하고 확장 할 수 있도록 하였다. 특히 어노테이션 데이터는 링크드 데이터에 존재하는 객체의 URI와 동영상 콘텐츠에 등장하는 객체를 연결하기만 한다. 즉, 모든 관련 정보를 포함하고 있는 게 아니라 사용자의 요구가 있을 때, 해당 객체의 URI를 이용하여 링크드 데이터로부터 가져온다. 두 번째는 시청자들이 동영상 콘텐츠를 시청하는 중 관심 있는 객체에 대한 정보를 브라우징 하는 모듈이다. 이 모듈은 시청자의 간단한 상호작용을 통해 적절한 질의문을 자동으로 생성하고 관련 정보를 링크드 데이터로 부터 얻어 제공한다. 본 연구를 통해 시맨틱웹 환경에서 사용자의 상호작용을 통해 즉각적으로 관심 있는 객체의 부가적인 정보를 얻을 수 있도록 함으로써 향후 개선된 동영상 콘텐츠 서비스 환경이 구축 될 수 있기를 기대한다.

    영어초록

    Previously common users just want to watch the video contents without any specific requirements or purposes. However, in today's life while watching video user attempts to know and discover more about things that appear on the video. Therefore, the requirements for finding multimedia or browsing information of objects that users want, are spreading with the increasing use of multimedia such as videos which are not only available on the internet‐capable devices such as computers but also on smart TV and smart phone. In order to meet the usersʼ requirements, labor‐intensive annotation of objects in video contents is inevitable. For this reason, many researchers have actively studied about methods of annotating the object that appear on the video. In keyword‐based annotation related information of the object that appeared on the video content is immediately added and annotation data including all related information about the object must be individually managed. Users will have to directly input all related information to the object. Consequently, when a user browses for information that related to the object, user can only find and get limited resources that solely exists in annotated data. Also, in order to place annotation for objects user's huge workload is required. To cope with reducing user’s workload and to minimize the work involved in annotation, in existing object‐based annotation automatic annotation is being attempted using computer vision techniques like object detection, recognition and tracking. By using such computer vision techniques a wide variety of objects that appears on the video content must be all detected and recognized. But until now it is still a problem facing some difficulties which have to deal with automated annotation.
    To overcome these difficulties, we propose a system which consists of two modules. The first module is the annotation module that enables many annotators to collaboratively annotate the objects in the video content in order to access the semantic data using Linked Data. Annotation data managed by annotation server is represented using ontology so that the information can easily be shared and extended. Since annotation data does not include all the relevant information of the object, existing objects in Linked Data and objects that appear in the video content simply connect with each other to get all the related information of the object. In other words, annotation data which contains only URI and metadata like position, time and size are stored on the annotation sever. So when user needs other related information about the object, all of that information is retrieved from Linked Data through its relevant URI. The second module enables viewers to browse interesting information about the object using annotation data which is collaboratively generated by many users while watching video. With this system, through simple user interaction the query is automatically generated and all the related information is retrieved from Linked Data and finally all the additional information of the object is offered to the user.
    With this study, in the future of Semantic Web environment our proposed system is expected to establish a better video content service environment by offering users relevant information about the objects that appear on the screen of any internet‐capable devices such as PC, smart TV or smart phone.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:43 오전