• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

반복적 최적 자승 학습에 기반을 둔 움직임 적응적 시간영역 잡음 제거 필터링 (Motion Adaptive Temporal Noise Reduction Filtering Based on Iterative Least-Square Training)

9 페이지
기타파일
최초등록일 2025.04.14 최종저작일 2010.09
9P 미리보기
반복적 최적 자승 학습에 기반을 둔 움직임 적응적 시간영역 잡음 제거 필터링
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - SP / 47권 / 5호 / 127 ~ 135페이지
    · 저자명 : 김성득, 임경원

    초록

    동영상에 내재된 잡음을 제거하기 위해 사용되는 움직임 적응적 시간영역 잡음 제거 필터링에서는 움직임의 정도에 따라필터링의 강도를 적절하게 조절하는 것이 매우 중요하다. 본 논문에서는 최적 자승 학습에 기반을 둔 움직임 적응적 시간영역필터링 방안을 제안한다. 움직임 정도에 따라 각 화소를 분류하여 분류코드를 지정하고, 각 분류코드에 따라 반복적 최적 자승학습에 기반을 둔 최적의 필터 계수를 유도한다. 반복적 학습과정은 사전에 미리 수행되어 학습된 결과만 룩업 테이블에 저장된다. 실제 잡음 제거 필터링 과정에서는 각 화소를 움직임 정도에 따라 분류한 후 분류코드에 따라 룩업 테이블에 있는 필터계수를 읽어 간결한 필터링을 취한다. 실험결과는 제안된 방법이 잡음 제거 응용에서 번짐을 방지하면서 동영상 잡음을 효과적으로 제거함을 보여준다.

    영어초록

    In motion adaptive temporal noise reduction filtering used for reducing video noises, the strength of motion adaptive temporal filtering should be carefully controlled according to temporal movement. This paper presents a motion adaptive temporal filtering scheme based on least-square training. Each pixel is classified to a specific class code according to temporal movement, and then, an iterative least-square training method is applied for each class code to find optimal filtering coefficients. The iterative least-square training is an off-line procedure, and the trained filter coefficients are stored in a lookup table (LUT). In actual noise reduction filtering operation, after each pixel is classified by temporal movement, simple filtering operation is applied with the filter coefficients stored in the LUT according to the class code.
    Experiment results show that the proposed method efficiently reduces video noises without introducing blurring.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - SP”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:49 오후