• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신 (Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map)

9 페이지
기타파일
최초등록일 2025.04.12 최종저작일 2015.08
9P 미리보기
국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신
  • 미리보기

    서지정보

    · 발행기관 : 한국측량학회
    · 수록지 정보 : 한국측량학회지 / 33권 / 4호 / 267 ~ 275페이지
    · 저자명 : 이승기, 최석근, 노신택, 임노열, 최주원

    초록

    토지피복지도는 환경, 군사, 의사결정 등 다양한 분야에서 널리 사용되고 있다. 본 연구에서는 단일 위성영상과 환경부에서 제공하는 국가토지피복도를 이용하여 훈련자료를 자동으로 추출하고, 이를 활용하여 피복을 분류하는 방법을 제안하였다. 이를 위하여 초기 훈련자료는 무감독분류인 ISODATA와 기존 토지피복도를 이용하였으며, 무감독 분류 사용시 각 클래스별 분류 선정과 클래스 명명, 감독분류에서 훈련자료 선정 등의 문제점을 해결하기 위하여 기존 토지피복도의 클래스 정보를 활용하여 자동으로 클래스를 분류하고 명명하였다. 추출된 초기 훈련자료는 대상 위성영상의 토지피복분류를 위하여 MLC의 훈련자료를 활용하였고, 피복분류의 정확도 향상을 위하여 반복방법을 적용하여 훈련자료를 갱신하였으며 최종적으로 토지피복지도를 추출하였다. 또한, 화소분류방법에서 발생하는 salt and pepper를 감소시키기 위하여 각 반복단계별 MRF를 적용하여 분류정확도를 향상시켰다. 본 연구에서 제안된 방법을 대상지역에 적용한 결과 효과적으로 토지피복지도를 생성할 수 있음을 정량적, 시각적으로 확인하였다.

    영어초록

    Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국측량학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:54 오후