• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

중립도 기반 선택적 단어 제거를 통한유용 리뷰 분류 정확도 향상 방안 (Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms)

14 페이지
기타파일
최초등록일 2025.04.12 최종저작일 2016.09
14P 미리보기
중립도 기반 선택적 단어 제거를 통한유용 리뷰 분류 정확도 향상 방안
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 22권 / 3호 / 129 ~ 142페이지
    · 저자명 : 이민식, 이홍주

    초록

    전자상거래에서 소비자들의 구매 의사결정에 판매 제품을 이미 구매하여 사용한 고객의 리뷰가 중요한 영향을 미치고 있다. 전자상거래 업체들은 고객들이 제품 리뷰를 남기도록 유도하고 있으며, 구매고객들도 적극적으로 자신의 경험을 공유하고 있다. 한 제품에 대한 고객 리뷰가 너무 많아져서 구매하려는 제품의 모든 리뷰를읽고 제품의 장단점을 파악하는 것은 무척 힘든 일이 되었다. 전자상거래 업체들과 연구자들은 텍스트 마이닝을 활용하여 리뷰들 중에서 유용한 리뷰들의 속성을 파악하거나 유용한 리뷰와 유용하지 않은 리뷰를 미리 분류하는 노력을 수행하고 있다. 고객들에게 유용한 리뷰를 필터링하여 전달하는 방안이다.
    본 연구에서는 문서-단어 매트릭스에서 단어의 제거 기준으로 온라인 고객 리뷰가 유용한 지, 그렇지 않은지를 구분하는 문제에서 단어들이 유용 리뷰 집합과 유용하지 않은 리뷰집합에 중복하여 등장하는 정도를 측정한중립도를 제시한다. 제시한 중립도를 희소성과 함께 분석에 활용하여 제거할 단어를 선정한 후에 각 분류 알고리즘의 성과를 비교하였다. 최적의 성과를 보이는 중립도를 찾았으며, 희소성과 중립도에 따라 단어를 선택적으로 제거하였다.
    실험은 Amazon.com의 ‘Cellphones & Accessories’, ‘Movies & TV program’, ‘Automotive’, ‘CDs & Vinyl’, ‘Clothing, Shoes & Jewelry’ 제품 분야 고객 리뷰와 사용자들의 리뷰에 대한 평가를 활용하였다. 전체 득표의 수가 4개 이상인 리뷰 중에서 제품 카테고리 별로 유용하다고 판단되는 1,500개의 리뷰와 유용하지 않다고 판단되는 1,500개의 리뷰를 무작위로 추출하여 연구에 사용하였다.
    데이터 집합에 따라 정확도 개선 정도가 상이하며, F-measure 기준으로는 두 알고리즘에서 모두 희소성과 중립도에 기반하여 단어를 제거하는 방안이 더 성과가 높았다. 하지만 Information Gain 알고리즘에서는 Recall 기준으로는 5개 제품 카테고리 데이터에서 언제나 희소성만을 기준으로 단어를 제거하는 방안의 성과가 높았으며, SVM에서는 전체 단어를 활용하는 방안이 Precision 기준으로 성과가 더 높았다. 따라서, 활용하는 알고리즘과 분석 목적에 따라서 단어 제거 방안을 고려하는 것이 필요하다.

    영어초록

    Customer product reviews have become one of the important factors for purchase decision makings.
    Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews.
    To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful.
    Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review.
    Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions.
    The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications – useful and not useful – and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality.
    We tested our approach with Amazon.com’s review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry.
    We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category.
    And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms.
    However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 07일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:46 오전