PARTNER
검증된 파트너 제휴사 자료

토픽 모델링을 이용한 댓글 그래프 기반 소셜 마이닝 기법 (A Reply Graph-based Social Mining Method with Topic Modeling)

6 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2014.12
6P 미리보기
토픽 모델링을 이용한 댓글 그래프 기반 소셜 마이닝 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 24권 / 6호 / 640 ~ 645페이지
    · 저자명 : 이상연, 이건명

    초록

    인터넷 상에서 많은 사람들은 사용자 간의 의사소통과 정보 공유, 사회적 관계를 생성하기 위한 방법으로 소셜 네트워크 서비스를 이용한다. 그 중 대표적인 트위터는 하루에 수백만 건의 소셜 데이터가 발생하기 때문에 수집되고 있는 데이터의 양이 엄청나다. 이 방대한 양의 데이터로부터 의미 있는 정보를 추출하는 소셜 마이닝이 집중적으로 연구되고 있다. 트위터는 일반적으로 유용한 정보 혹은 공유하고자 하는 내용을 팔로잉-팔로워 관계를 이용해 쉽게 전달하고 리트윗할 수 있다. 소셜 미디어에서 트윗 데이터에 대한 토픽 모델링은 이슈를 추적하기 위한 좋은 도구이다. 짧은 텍스트 기반인 트윗 데이터의 제한점을 극복하기 위해, 사용자를 노드로 사용자간 댓글과 리트윗 메시지의 여부를 간선으로 하는 그래프 구조를 갖는 댓글 그래프의 개념을 소개한다. 토픽 모델링의 대표적인 방법인 LDA 토픽 모델이 짧은 텍스트 데이터에 대해 비효율적인 것을 보완하기 위한 방법으로, 이 논문에서는 짧은 문서의 수를 줄이고 마이닝 결과의 질을 향상시키기 위한 댓글 그래프를 사용하는 토픽 모델링 방법을 소개한다. 제안한 모델은 토픽 모델링 방법으로 LDA 모델을 사용하였으며, 7일간 수집한 트윗 데이터에 대한 실험 결과를 보인다.

    영어초록

    Many people use social network services as to communicate, to share an information and to build social relationships between others on the Internet. Twitter is such a representative service, where millions of tweets are posted a day and a huge amount of data collection has been being accumulated. Social mining that extracts the meaningful information from the massive data has been intensively studied. Typically, Twitter easily can deliver and retweet the contents using the following-follower relationships. Topic modeling in tweet data is a good tool for issue tracking in social media. To overcome the restrictions of short contents in tweets, we introduce a notion of reply graph which is constructed as a graph structure of which nodes correspond to users and of which edges correspond to existence of reply and retweet messages between the users. The LDA topic model, which is a typical method of topic modeling, is ineffective for short textual data. This paper introduces a topic modeling method that uses reply graph to reduce the number of short documents and to improve the quality of mining results. The proposed model uses the LDA model as the topic modeling framework for tweet issue tracking. Some experimental results of the proposed method are presented for a collection of Twitter data of 7 days.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 07일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:40 오후