PARTNER
검증된 파트너 제휴사 자료

GPU 클러스터 기반 대용량 온톨로지 추론 (Scalable Ontology Reasoning Using GPU Cluster Approach)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
10 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2016.01
10P 미리보기
GPU 클러스터 기반 대용량 온톨로지 추론
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 43권 / 1호 / 61 ~ 70페이지
    · 저자명 : 홍진영, 전명중, 박영택

    초록

    근래에 들어 다양한 시멘틱 서비스를 위하여 기존의 지식을 바탕으로 새로운 지식을 고속으로 추론할 수 있는 대용량 온톨로지 추론 기법이 요구되고 있다. 이런 추세에 따라 대규모의 클러스터를 활용하는 하둡 및 Spark 프레임워크 기반의 온톨로지 추론 엔진 개발이 연구되고 있다. 또한, 기존의 CPU에 비해 많은 코어로 구성되어 있는 GPGPU를 활용하는 병렬 프로그래밍 방식도 온톨로지 추론에 활용되고 있다. 앞서 말한 두 가지 방식의 장점을 결합하여, 본 논문에서는 RDFS 대용량 온톨로지 데이터를 인-메모리 기반 프레임워크인 Spark를 통해 분산시키고 GPGPU를 이용하여 분산된 데이터를 고속 추론하는 방법을 제안한다. GPGPU를 통한 온톨로지 추론은 기존의 추론 방식보다 저비용으로 고속 추론을 수행하는 것이 가능하다. 또한 Spark 클러스터의 각 노드를 통하여 대용량 온톨로지 데이터에 대한 부하를 줄일 수 있다. 본 논문에서 제안하는 추론 엔진을 평가하기 위하여 LUBM10, 50, 100, 120에 대해 추론 속도를 실험하였고, 최대 데이터인 LUBM120(약 1백7십만 트리플, 2.1GB)의 실험 결과, 인-메모리(Spark) 추론 엔진 보다 7배 빠른 추론 성능을 보였다.

    영어초록

    In recent years, there has been a need for techniques for large-scale ontology inference in order to infer new knowledge from existing knowledge at a high speed, and for a diversity of semantic services. With the recent advances in distributed computing, developments of ontology inference engines have mostly been studied based on Hadoop or Spark frameworks on large clusters. Parallel programming techniques using GPGPU, which utilizes many cores when compared with CPU, is also used for ontology inference. In this paper, by combining the advantages of both techniques, we propose a new method for reasoning large RDFS ontology data using a Spark in-memory framework and inferencing distributed data at a high speed using GPGPU. Using GPGPU, ontology reasoning over high-capacity data can be performed as a low cost with higher efficiency over conventional inference methods. In addition, we show that GPGPU can reduce the data workload on each node through the Spark cluster. In order to evaluate our approach, we used LUBM ranging from 10 to 120. Our experimental results showed that our proposed reasoning engine performs 7 times faster than a conventional approach which uses a Spark in-memory inference engine.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:40 오후