PARTNER
검증된 파트너 제휴사 자료

가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현 (Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household)

6 페이지
기타파일
최초등록일 2025.04.10 최종저작일 2021.08
6P 미리보기
가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 6권 / 1호 / 127 ~ 132페이지
    · 저자명 : 이주희, 이강윤

    초록

    우리나라는 자원 빈국인 동시에 에너지 다소비 국가이다. 또한 전기 에너지에 대한 사용량 및 의존도가 매우 높고, 총 에너지 사용의 20% 이상은 건물에서 소비된다. 딥러닝과 머신러닝에 대한 연구가 활발해지면서다양한 알고리즘을 에너지 효율 분야에 적용하려는 연구가 진행되고 있으며, 에너지의 효율적인 관리를 위한 건물에너지관리시스템(BEMS)의 도입이 늘어가는 추세이다. 본 논문에서는 스마트플러그를 이용하여직접 수집한 가구당 기기별 에너지 사용량을 바탕으로 데이터베이스를 구축하였다. 또한 RNN과 LSTM 모델을 이용하여 수집한 데이터를 효과적으로 분석 및 예측하는 알고리즘을 구현하였다. 추후 이 데이터는에너지 사용량 예측을 넘어 전력 소비 패턴 분석 등에 적용할 수 있다. 이는 에너지 효율 개선에 도움이될 수 있으며, 미래 데이터의 예측을 통해 효과적인 전력 사용량 관리에 도움을 줄 것으로 기대된다.

    영어초록

    Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption.
    This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:51 오후