• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

전기 정전용량을 기반으로 U-net 모델을 이용한 반도체후단 공정의 잔류물 모니터링 (Residual deposit monitoring of semiconductor back-end process using U-net model based on the electrical capacitance)

10 페이지
기타파일
최초등록일 2025.04.09 최종저작일 2024.06
10P 미리보기
전기 정전용량을 기반으로 U-net 모델을 이용한 반도체후단 공정의 잔류물 모니터링
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 28권 / 2호 / 158 ~ 167페이지
    · 저자명 : 전민호, 아닐쿠바, 김경연

    초록

    본 논문에서는, 시뮬레이션 상에서 반도체 후단 공정의 프로세스를 구현하고 파이프 내부 상황을 모니터링하기 위해 전기 정전용량을 기반으로 한 U-net 모델을 적용하였다. 배관에 부착된 전극에서 측정한 정전용량 값은 U-net 네트워크 모델의 입력 데이터로사용되며, 모델을 통해 추정한 유전율 분포를 가지고 파이프 단면을 이미지화하였다. 성능 평가를 위해 수치 시뮬레이션 얀에서U-net 모델, FCNN(Fully-connected neural network) 모델, Newton-Raphson 방법으로 재구성한 이미지를 비교한 결과,U-net이 다른 이미지 복원 방식보다 좋은 복원 성능을 보였다.

    영어초록

    In this study, U-net model based on electrical capacitance is applied to monitor the condition inside thepipeline of semiconductor rear end process implemented in the numerical simulation. Capacitance values measuredfrom electrodes attached to the pipeline is used as input data for the U-net network model and estimated permittivitydistribution by the U-net model is used to reconstructed cross-sectional image at the pipeline. In the numericalsimulation, images reconstructed by U-net model, Fully-connected neural network (FCNN) model and Newton-Raphson method are compared for evaluation. U-net model shows good results as compared to other models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 20일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:00 오전