• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화 (Neural networks optimization for multi-dimensional digital signal processing in IoT devices)

9 페이지
기타파일
최초등록일 2025.04.09 최종저작일 2017.10
9P 미리보기
IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화
  • 미리보기

    서지정보

    · 발행기관 : 한국디지털콘텐츠학회
    · 수록지 정보 : 디지털콘텐츠학회논문지 / 18권 / 6호 / 1165 ~ 1173페이지
    · 저자명 : 최권택

    초록

    가장 대표적인 기계학습 알고리즘인 딥러닝 방법은 여러 응용 분야에서 활용성이 입증돼 디지털신호처리에 널리 사용되고 있다. 그러나 많은 학습데이터를 사용해 학습하는 과정에서 많은 메모리와 학습시간이 필요하기 때문에 CPU 성능과 메모리 용량이 제한된 IoT 디바이스에 딥러닝 기술을 적용하기는 어렵다. 특히 메모리 용량이 2K~8K 로 극히 적은 아두이노 기반의 디바이스를 사용한다면 알고리즘 구현에 많은 한계가 발생한다. 본 논문에서는 정확성과 효율성이 입증돼 여러 분야에서 활용되고 있는 ELM 알고리즘을 아두이노에서 최적화하는 방법을 제안하고, 실험을 통해 메모리 용량이 2KB인 아두이노 UNO와 메모리 용량이 8KB인 아두이노 MEGA에서 각각 15차원, 42차원의 다중 클래스 학습이 가능함을 보였다. 실험을 입증하기 위해 가우시안 혼합 모델링을 사용해 생성한 데이터셋과 범용적으로 사용하는 UCI 데이터셋을 사용해 제안한 알고리즘의 효율성을 입증하였다.

    영어초록

    Deep learning method, which is one of the most famous machine learning algorithms, has proven its applicability in various applications and is widely used in digital signal processing. However, it is difficult to apply deep learning technology to IoT devices with limited CPU performance and memory capacity, because a large number of training samples requires a lot of memory and computation time. In particular, if the Arduino with a very small memory capacity of 2K to 8K, is used, there are many limitations in implementing the algorithm. In this paper, we propose a method to optimize the ELM algorithm, which is proved to be accurate and efficient in various fields, on Arduino board. Experiments have shown that multi-class learning is possible up to 15-dimensional data on Arduino UNO with memory capacity of 2KB and possible up to 42-dimensional data on Arduino MEGA with memory capacity of 8KB. To evaluate the experiment, we proved the effectiveness of the proposed algorithm using the data sets generated using gaussian mixture modeling and the public UCI data sets.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“디지털콘텐츠학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:48 오후