• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선 (An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis)

10 페이지
기타파일
최초등록일 2025.04.09 최종저작일 2022.03
10P 미리보기
다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지. 컴퓨터 및 통신시스템 / 11권 / 3호 / 73 ~ 82페이지
    · 저자명 : 김용회, 김영한

    초록

    오토-스케일링은 클라우드 컴퓨팅 기술이 ICT 핵심 기반 기술로 자리 잡을 수 있는 가장 중요한 기능 중 하나로써 사용자나 서비스 요청의폭발적인 증가 또는 감소에도 시스템 자원과 서비스 인스턴스를 적절하게 확장 또는 축소하여 상황에 맞는 서비스의 안정성과 비용 대비 효과를향상하는 기술이다. 하지만 특정 시스템 자원에 대한 모니터링 시점의 단일 메트릭 데이터를 기반으로 정책이 수립·실행되다 보니 이미 서비스에영향이 있거나 실제 필요한 서비스 인스턴스를 세밀하게 관리하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 시스템자원과 서비스 응답시간을 다변량 시계열 분석 모델을 사용하여 분석·예측하고 이를 기반으로 오토-스케일링 정책을 수립하는 방안을 제안한다.
    이를 검증하기 위해 쿠버네티스 환경에서 커스텀 스케쥴러를 구현하고, 실험을 통해 쿠버네티스 기본 오토-스케일링 방식과 비교 분석한다. 제안하는기법은 시스템 자원과 응답시간 사이의 영향에 기반한 예측 데이터를 활용하여 예상되는 상황에 대한 오토-스케일링을 선제적으로 실행함으로써시스템의 안정성을 확보하고 서비스 품질이 저하되지 않는 범위내에서 필요한 만큼의 인스턴스를 세밀하게 관리할 수 있는 결과를 보인다.

    영어초록

    Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requestsis explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide servicessuitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a singlemetric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the serviceinstance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predictsystem resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy basedon this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes defaultauto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resourcesand response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as muchas necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회논문지. 컴퓨터 및 통신시스템”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:34 오후