• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조 (Trajectory Index Structure based on Signatures for Moving Objects on a Spatial Network)

18 페이지
기타파일
최초등록일 2025.04.07 최종저작일 2008.09
18P 미리보기
공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조
  • 미리보기

    서지정보

    · 발행기관 : 한국공간정보시스템학회
    · 수록지 정보 : 한국공간정보시스템학회 논문지 / 10권 / 3호 / 1 ~ 18페이지
    · 저자명 : 김영진, 김영창, 심춘보, 장재우

    초록

    공간 네트워크 상을 움직이는 많은 이동객체들의 궤적 분석을 통해서 많은 정보를 얻을 수 있다. 이를
    위해서, 궤적을 효과적으로 검색할 수 있는 궤적 기반 색인 구조가 필요하다. 하지만 도로와 같은 공간 네트
    워크상의 궤적 기반 색인 구조에 대한 연구는 FNR-트리나 MON-트리를 제외하고는 연구가 많이 부족한
    실정이다. 또한, FNR-트리나 MON-트리는 에지를 지난 이동객체의 이동정보인 세그먼트만을 저장할
    뿐 전체 궤적을 유지하지 못하며, 궤적 질의에 대해 비효율적이다. 따라서 본 논문에서는 공간 네트워크상
    의 이동객체를 위한 시그니처 기반의 궤적 색인 구조인 SigMO-트리를 제안한다. 이를 위해, 이동객체를
    공간과 시간 특성으로 분류하고, 전체 궤적을 유지함으로써 영역질의와 궤적질의를 동시에 처리할 수 있는
    색인 구조를 설계한다. 아울러, 사용자 질의를 시공간영역 내 궤적 질의, 시간영역 내 유사궤적 질의로 분
    류하고, 이들을 처리하기 위한 질의 처리 알고리즘을 제안한다. 각 질의처리 알고리즘은 효율적인 검색을
    위하여 시그니처 파일 기법을 이용하여 궤적을 검색한다. 마지막으로 성능평가를 통해 본 논문에서 제안한
    궤적 기반 색인 구조가 기존의 색인구조인 FNR-트리, MON-트리보다 성능이 우수함을 보인다.

    영어초록

    Because we can usually get many information through analyzing trajectories of moving
    objects on spatial networks, efficient trajectory index structures are required to achieve good
    retrieval performance on their trajectories. However, there has been little research on
    trajectory index structures for spatial networks such as FNR-tree and MON-tree. Also,
    because FNR-tree and MON-tree store the segment unit of moving objects, they can't
    support the trajectory of whole moving objects.In this paper, we propose an efficient trajectory index structures based on signatures on a
    spatial network, named SigMO-Tree. For this, we divide moving object data into spatial and
    temporal attributes, and design an index structure which supports not only range query but
    trajectory query by preserving the whole trajectory of moving objects. In addition, we divide
    user queries into trajectory query based on spatio-temporal area and similar-trajectory
    query, and propose query processing algorithms to support them. The algorithm uses a
    signature file in order to retrieve candidate trajectories efficiently Finally, we show from our
    performance analysis that our trajectory index structure outperforms the existing index
    structures like FNR-Tree and MON-Tree.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:34 오후