• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

재구성 가능한 뉴럴 네트워크 구현을 위한 새로운 저전력 내적연산 프로세서 구조

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
10 페이지
기타파일
최초등록일 2025.04.03 최종저작일 2004.05
10P 미리보기
재구성 가능한 뉴럴 네트워크 구현을 위한 새로운 저전력 내적연산 프로세서 구조
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - SD / 41권 / 5호 / 471 ~ 480페이지
    · 저자명 : 임국찬, 이형수

    초록

    뉴럴 네트워크는 동작 모드를 학습과 인지 과정으로 구분할 수 있다. 학습은 다양한 입력 패턴에 대하여 학습자가 원하는 결과값을 얻을 때까지 결합계수를 업데이트 하는 과정이고, 인지는 학습을 통해 결정된 결합계수와 입력 패턴과의 연산을 수행하는 과정이다. 기존의 내적연산 프로세서는 처리 속도를 개선하고 하드웨어 복잡도를 줄이는 다양한 구조가 연구되었지만, 뉴럴 네트워크의 학습과 인지모드에 대한 차별화된 구조는 없었다. 이를 위해, 본 논문에서는 재구성 가능한 뉴럴 네트워크 구현을 위한 새로운 저전력 내적연산 프로세서 구조를 제안한다. 제안한 구조는 학습모드에서 기존의 비트-시리얼 내적연산 프로세서와 같이 동작을 하여, 비트-레벨의 빠른 처리 및 하드웨어 구현에 적합하고 높은 수준의 파이프라인 적용이 가능하다는 장점을 가진다. 또한, 인지모드에서는 고정된 결합계수에 따라 연산을 수행할 활성화 유닛을 최소화시킴으로서 전력 소비를 줄일 수 있다. 시뮬레이션 결과 활성화 유닛은 결합계수에 의존적이기는 하지만 50% 내외까지 줄일 수 있음을 확인 하였다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - SD”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 17일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:45 오후