• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할 (Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification)

8 페이지
기타파일
최초등록일 2025.03.31 최종저작일 2006.10
8P 미리보기
명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지. 컴퓨터 및 통신시스템 / 13권 / 5호 / 465 ~ 472페이지
    · 저자명 : 김민정, 이정민, 김명희

    초록

    최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영향을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다.본 연구에서는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링 (coherence enhancing diffusion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가능하고 사용자 수동 후처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.

    영어초록

    Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiguous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회논문지. 컴퓨터 및 통신시스템”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:07 오전