• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

문서 클러스터를 위한 워드넷기반의 대표 레이블 선정 방법 (Representative Labels Selection Technique for Document Cluster using WordNet)

13 페이지
기타파일
최초등록일 2025.03.27 최종저작일 2017.04
13P 미리보기
문서 클러스터를 위한 워드넷기반의 대표 레이블 선정 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 18권 / 2호 / 61 ~ 73페이지
    · 저자명 : 김태훈, 손미애

    초록

    본 연구에서는 문서 클러스터링 결과 도출된 개별 클러스터가 함축하고 있는 의미를 파악하는 데 필요한 어휘들의 정보량을 활용한 문서 클러스터 레이블링(Documents Cluster Labeling) 방법을 제안하였다. 이를 위해, 클러스터에 포함된 어휘들이 해당 클러스터에서 얼마나 중요한 비중을 차지하고 있는지 파악하기 위하여 각 어휘의 출현 빈도와 정보량을 이용한 어휘의 가중치를 계산한 후, 워드넷을 이용하여 클러스터에 포함된 어휘들의 최근접 공통 상위어를 후보 레이블로 식별하였다. 이상의 과정을 거쳐 식별된 후보레이블의 정보량과 클러스터내에서의 중요도 가중치를 활용해, 해당 클러스터의 의미와 특징을 포괄적으로 표현할 수 있는 대표 레이블을 결정하였다. 본 연구의 우수성을 입증하기 위해 다음과 같은 실험을 수행하였다. 실험은 본 연구에서 제안한 방법에 따라 선정된 레이블과 후보 레이블을 워드넷에 프로젝션한 후, 워드넷상에서 이들 레이블의 위치(깊이)를 확인하였다. 또한 선정된 후보 레이블을 상위어로 갖고 있는 클러스터 내 어휘의 수를 도출하여, 휴리스틱 방법에 따라 선정된 레이블을 전문가가 찾은 대표 레이블과의 비교를 수행하였다. 평가지표로 후보 레이블의 적합성()과 대표 레이블의 적절성( )을 활용하였다. 실험 결과, 본 연구에서 제안한 방법을 적용해 문서 클러스터 레이블링을 수행할 경우, 후보 레이블의 적합성의 경우 기존의 방법보다약간 감소하지만 계산량이 기존 방법의 약 20% 정도로 감소하였으며, 대표 레이블의 적절성의 경우 기존의 방법보다 우수한 결과를도출하는 것을 확인하였다.

    영어초록

    In this paper, we propose a Documents Cluster Labeling method using information content of words in clusters to understand what the clusters imply. To do so, we calculate the weight and frequency of the words. These two measures are used to determine the weight among the words in the cluster. As a nest step, we identify the candidate labels using the WordNet. At this time, the candidate labels are matched to least common hypernym of the words in the cluster. Finally, the representative labels are determined with respect to information content of the words and the weight of the words. To prove the superiority of our method, we perform the heuristic experiment using two kinds of measures, named the suitability of the candidate label () and the appropriacy of representative label ( ). In applying the method proposed in this research, in case of suitability of the candidate label, it decreases slightly compared with existing methods, but the computational cost is about 20% of the conventional methods. And we confirmed that appropriacy of the representative label is better results than the existing methods. As a result, it is expected to help data analysts to interpret the document cluster easier.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:29 오전