PARTNER
검증된 파트너 제휴사 자료

희박 공분산 행렬에 대한 베이지안 변수 선택 방법론 비교 연구 (A comparison study of Bayesian variable selection methods for sparse covariance matrices)

14 페이지
기타파일
최초등록일 2025.03.21 최종저작일 2022.04
14P 미리보기
희박 공분산 행렬에 대한 베이지안 변수 선택 방법론 비교 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 35권 / 2호 / 285 ~ 298페이지
    · 저자명 : 김봉수, 이경재

    초록

    연속 수축 사전분포는 spike and slab 사전분포와 더불어, 희박 회귀계수 벡터 또는 공분산 행렬에 대한 베이지안 추론을 위해 널리 사용되고 있다.
    특히 고차원 상황에서, 연속 수축 사전분포는 spike and slab 사전분포에 비해 매우 작은 모수공간을 가짐으로써 계산적인 이점을 가진다.
    하지만 연속 수축 사전분포는 정확히 0인 값을 생성하지 않기 때문에, 이를 이용한 변수 선택이 자연스럽지 않다는 문제가 있다.
    비록 연속 수축 사전분포에 기반한 변수 선택 방법들이 개발되어 있기는 하지만, 이들에 대한 포괄적인 비교연구는 거의 진행되어 있지 않다.
    본 논문에서는, 연속 수축 사전분포에 기반한 두 가지의 변수 선택 방법들을 비교하려 한다.
    첫 번째 방법은 신용구간에 기반한 변수 선택, 두 번째 방법은 최근 Li와 Pati (2017)가 개발한 sequential 2-means 알고리듬이다.
    두 방법에 대한 간략한 소개를 한 뒤, 다양한 모의실험 상황에서 자료를 생성하여 두 방법들의 성능을 비교하였다.
    끝으로, 모의실험으로부터 발견한 몇 가지 사실들을 기술하고, 이로부터 몇 가지 제안을 하며 논문을 마치려 한다.

    영어초록

    Continuous shrinkage priors, as well as spike and slab priors, have been widely employed for Bayesian inference about sparse regression coefficient vectors or covariance matrices.
    Continuous shrinkage priors provide computational advantages over spike and slab priors since their model space is substantially smaller. This is especially true in high-dimensional settings.
    However, variable selection based on continuous shrinkage priors is not straightforward because they do not give exactly zero values.
    Although few variable selection approaches based on continuous shrinkage priors have been proposed, no substantial comparative investigations of their performance have been conducted.
    In this paper, We compare two variable selection methods: a credible interval method and the sequential 2-means algorithm (Li and Pati, 2017).
    Various simulation scenarios are used to demonstrate the practical performances of the methods.
    We conclude the paper by presenting some observations and conjectures based on the simulation findings.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:41 오전