• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구 (A fundamental study on the automation of tunnel blasting design using a machine learning model)

19 페이지
기타파일
최초등록일 2025.03.19 최종저작일 2022.09
19P 미리보기
머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구
  • 미리보기

    서지정보

    · 발행기관 : 사단법인 한국터널지하공간학회
    · 수록지 정보 : 한국터널지하공간학회 논문집 / 24권 / 5호 / 431 ~ 449페이지
    · 저자명 : 김양균, 이제겸, 이승원

    초록

    지금까지 국내에서는 수 많은 터널들이 완공되어 오면서 시공에서뿐 아니라 설계에서도 다양한 경험과 기술이 지속적으로 축적되어 왔다. 따라서 이제는 매우 복잡한 지질조건 또는 특수한 터널구조가 아니라면 일반적인 터널설계작업은 설계 항목에 따라 기존 유사 설계사례를 수정 또는 보완하는 것만으로도 충분한 경우도 적지 않다. 특히 터널발파설계의 경우,실제 터널시공시 현장에서 시험발파를 통해 시공을 위한 발파설계를 추가로 수행하는 것이 일반적이라는 것을 감안할때, 설계단계에서 수행하는 발파설계는 예비설계 성격을 지니고 있어 기존의 유사 설계사례를 참고하는 것도 타당하다고 사료된다. 한편 최근 4차산업혁명시대에 들어서면서 전 산업분야에 걸쳐 그 활용도가 급증하고 있는 인공지능은 터널 및 발파분야에서도 다양하게 활용되고 있지만, 발파터널의 경우 발파진동 및 암반분류 등의 예측 분야에서 주로 활용되고 있을 뿐 터널발파패턴 설계에 활용된 사례는 많지 않다. 따라서 본 연구에서는 터널발파설계를 인공지능의 한 분야인 머신러닝 모델을 이용하여 자동화하기 위한 시도를 하였다. 이를 위하여 25개 학습용 터널설계 자료 및 2개의 시험용 설계자료에서 4가지의 입력데이터(지보패턴, 도로유형, 상반 및 하반 단면적) 및 16개의 출력데이터(심발공 종류, 비장 약량, 천공수, 각 발파공 그룹별 공간격과 저항선 등)를 발췌하였다. 이를 기반으로 3가지 머신러닝 모델, 즉, XGBoost,ANN, SVM 모델을 시험한 결과 XGBoost모델이 상대적으로 최상의 결과를 나타내었다. 또한 이를 이용하여 실제 발파 설계 상황을 가정하여 발파패턴을 제안하도록 한 결과 일부 항목에서 보완이 필요하긴 하지만 일반적 설계와 유사한 결과를 나타내었다. 본 연구가 기초연구 성격이어서 전체 발파설계를 완벽하게 수행하기는 아직 부족하지만, 향후 충분한 발파설계데이터를 확보하고 세부적인 처리과정을 보완하여 실용적인 활용이 가능하도록 추가 연구를 수행할 계획이다.

    영어초록

    As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnelblast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting.
    For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additionalreports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:36 오후