• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

생태계 모방 알고리즘 기반 특징 선택 방법의 성능 개선 방안 (Performance Improvement of Feature Selection Methods based on Bio-Inspired Algorithms)

10 페이지
기타파일
최초등록일 2025.03.18 최종저작일 2008.08
10P 미리보기
생태계 모방 알고리즘 기반 특징 선택 방법의 성능 개선 방안
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 15권 / 4호 / 331 ~ 340페이지
    · 저자명 : 윤철민, 양지훈

    초록

    특징 선택은 기계 학습에서 분류의 성능을 높이기 위해 사용되는 방법이다. 여러 방법들이 개발되고 사용되어 오고 있으나, 전체 데이터에서 최적화된 특징 부분집합을 구성하는 문제는 여전히 어려운 문제로 남아있다. 생태계 모방 알고리즘은 생물체들의 행동 원리 등을 기반으로 하여 만들어진 진화적 알고리즘으로, 최적화된 해를 찾는 문제에서 매우 유용하게 사용되는 방법이다. 특징 선택 문제에서도 생태계 모방 알고리즘을 이용한 해결방법들이 제시되어 오고 있으며, 이에 본 논문에서는 생태계 모방 알고리즘을 이용한 특징 선택 방법을 개선하는 방안을 제시한다. 이를 위해 잘 알려진 생태계 모방 알고리즘인 유전자 알고리즘(GA)과 파티클 집단 최적화 알고리즘(PSO)을 이용하여 데이터에서 가장 분류 성능이 우수한 특징 부분집합을 만들어 내도록 하고, 최종적으로 개별 특징의 사전 중요도를 설정하여 생태계 모방 알고리즘을 개선하는 방법을 제안하였다. 이를 위해 개별 특징의 우수도를 구할 수 있는 mRMR이라는 방법을 이용하였다. 이렇게 설정한 사전 중요도를 이용하여 GA와 PSO의 진화 연산을 수정하였다. 데이터를 이용한 실험을 통하여 제안한 방법들의 성능을 검증하였다. GA와 PSO를 이용한 특징 선택 방법은 그 분류 정확도에 있어서 뛰어난 성능을 보여주었다. 그리고 최종적으로 제시한 사전 중요도를 이용해 개선된 방법은 그 진화 속도와 분류 정확도 면에서 기존의 GA와 PSO 방법보다 더 나아진 성능을 보여주는 것을 확인하였다.

    영어초록

    Feature Selection is one of methods to improve the classification accuracy of data in the field of machine learning. Many feature selection algorithms have been proposed and discussed for years. However, the problem of finding the optimal feature subset from full data still remains to be a difficult problem. Bio-inspired algorithms are well-known evolutionary algorithms based on the principles of behavior of organisms, and very useful methods to find the optimal solution in optimization problems. Bio-inspired algorithms are also used in the field of feature selection problems. So in this paper we proposed new improved bio-inspired algorithms for feature selection. We used well-known bio-inspired algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), to find the optimal subset of features that shows the best performance in classification accuracy. In addition, we modified the bio-inspired algorithms considering the prior importance (prior relevance) of each feature. We chose the mRMR method, which can measure the goodness of single feature, to set the prior importance of each feature. We modified the evolution operators of GA and PSO by using the prior importance of each feature. We verified the performance of the proposed methods by experiment with datasets. Feature selection methods using GA and PSO produced better performances in terms of the classification accuracy. The modified method with the prior importance demonstrated improved performances in terms of the evolution speed and the classification accuracy.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 18일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:59 오후