• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SAM Optimizer를 통한 위내시경 이미지 분류 CADx의 성능 향상 연구 (A Study on Improving the Performance of Gastroscopy Image Classification CADx System with SAM Optimizer)

7 페이지
기타파일
최초등록일 2025.03.17 최종저작일 2023.11
7P 미리보기
SAM Optimizer를 통한 위내시경 이미지 분류 CADx의 성능 향상 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한전기학회
    · 수록지 정보 : 전기학회논문지 / 72권 / 11호 / 1399 ~ 1405페이지
    · 저자명 : 박재범, 김민준, 원형식, 조현진, 조현종

    초록

    Gastric cancer has a high incidence in East Asians, and the risk increases over time. Often, gastric cancer presents no early symptoms, leading to missed treatments. Consequently, in Korea, support is provided to individuals over 40 years of age who undergo gastroscopy. However, as the number of gastroscopy patients increases, doctors' fatigue rises, becoming a factor that can lead to misdiagnosis. Therefore, this paper proposes a CADx (Computer-Aided Diagnosis) system for gastric lesion classification based on ConvNeXt and ViT (Vision Transformer), applying the SAM (Sharpness Aware Minimization) optimizer. ConvNeXt is a network that achieves high performance by incorporating techniques from Swin Transformer and the latest advancements, with ResNet-50 as the base model. ViT divides the image into smaller patches and uses these patches as input to the Transformer. This allows for learning relationships between patches and ultimately leads to image classification. To address the issue of limited data in medical images, the gastric abnormal dataset was augmented using the AutoAugment policy. The SAM Optimizer is an optimization technique that detects and minimizes the "sharpness" of the loss function that may occur during the deep learning model's learning process. Using this method, the sensitivity of classifying abnormal and normal gastroscopy images in ConvNeXt increased from 0.7167 to 0.9583 for the original dataset and from 0.7583 to 0.9833 for the augmented dataset. ViT exhibited a significant decrease from 0.9500 to 0.7750 in the original dataset but increased from 0.9500 to 0.9583 in the augmented dataset. This demonstrates that the SAM Optimizer can effectively enhance CADx performance.

    영어초록

    Gastric cancer has a high incidence in East Asians, and the risk increases over time. Often, gastric cancer presents no early symptoms, leading to missed treatments. Consequently, in Korea, support is provided to individuals over 40 years of age who undergo gastroscopy. However, as the number of gastroscopy patients increases, doctors' fatigue rises, becoming a factor that can lead to misdiagnosis. Therefore, this paper proposes a CADx (Computer-Aided Diagnosis) system for gastric lesion classification based on ConvNeXt and ViT (Vision Transformer), applying the SAM (Sharpness Aware Minimization) optimizer. ConvNeXt is a network that achieves high performance by incorporating techniques from Swin Transformer and the latest advancements, with ResNet-50 as the base model. ViT divides the image into smaller patches and uses these patches as input to the Transformer. This allows for learning relationships between patches and ultimately leads to image classification. To address the issue of limited data in medical images, the gastric abnormal dataset was augmented using the AutoAugment policy. The SAM Optimizer is an optimization technique that detects and minimizes the "sharpness" of the loss function that may occur during the deep learning model's learning process. Using this method, the sensitivity of classifying abnormal and normal gastroscopy images in ConvNeXt increased from 0.7167 to 0.9583 for the original dataset and from 0.7583 to 0.9833 for the augmented dataset. ViT exhibited a significant decrease from 0.9500 to 0.7750 in the original dataset but increased from 0.9500 to 0.9583 in the augmented dataset. This demonstrates that the SAM Optimizer can effectively enhance CADx performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:21 오전