• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준신속 식별 체계 (Rapid metabolic discrimination between Zoysia japonica and Zoysia sinica based on multivariate analysis of FT-IR spectroscopy)

10 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2016.06
10P 미리보기
FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준신속 식별 체계
  • 미리보기

    서지정보

    · 발행기관 : 한국식물생명공학회
    · 수록지 정보 : Journal of Plant Biotechnology / 43권 / 2호 / 213 ~ 222페이지
    · 저자명 : 양대화, 안명숙, 정옥철, 송인자, 고석민, 전예인, 강홍규, 선현진, 권용익, 김석원, 이효연

    초록

    본 연구에서는 FT-IR 스펙트럼 분석을 통해 한국에서 자생하는 Zoysia 속인 들잔디(Zoysia japonica)와 갯잔디(Zoysia sinica)의 전세포추출 시료로부터 대사체 수준에서 신속한식별체계를 확립하고자 하였다. 이를 위해 기준라인으로분자마커를 이용해 동정이 완료된 들잔디와 갯잔디 시료를FT-IR 분석에 사용하였으며, 제주도와 전라도에서 수집된미동정 잔디들을 기준라인과 비교분석하기 위해 FT-IR 분석에 사용하였다. 기준라인 들잔디와 갯잔디 시료로부터확보된 FT-IR 스펙트럼 데이터의 PCA (principal component analysis)와 PLS-DA (partial least square discriminant analysis) 분석 결과 각 기준라인은 들잔디 및 갯잔디 종에 따라 뚜렷하게 식별되었다. 들잔디와 갯잔디 시료 사이에서 가장 큰PC loading value값을 보인 부위는 1,100 ~ 950 cm -1 였다. 이부위는 carbohydrates 계열의 화합물들의 질적, 양적 정보를반영하는 부위로 이 계열의 화합물의 양적, 질적 차이가 들잔디, 갯잔디의 대사체 수준 구분에 중요한 역할을 하고 있음을 알 수 있었다. 기준라인 들잔디와 갯잔디 시료집단에미동정된 잔디 시료 집단을 추가하여 PCA와 PLS-DA 분석한 결과, 일차적으로 들잔디와 갯잔디로 구분이 이루어졌으며 미동정 집단은 모두 들잔디 그룹내에 분포하였다. 특히, HCA (hierarchical clustering analysis) dendrogram 분석 결과에서 동정 및 미동정 들잔디 시료들은 모두 수집지 특성에따라 국내 국립공원의 고산지대와 국내 섬지역 해안가의저지대로 별도의 소그룹을 형성하였다. 따라서, 본 연구 결과에서 확립된 FT-IR 스펙트럼 분석법은 한국 전역에 자생하는 들잔디와 갯잔디의 신속한 종 식별뿐만 아니라 수집지역의 특성에 따라 대사체 수준에서의 유연관계를 규명하는데 활용 가능할 것으로 기대된다.

    영어초록

    This study aims to establish a system for the rapid discrimination of Zoysia species using metabolite fingerprinting of FT-IR spectroscopy combined with multivariate analysis. Whole cell extracts from leaves of 19 identified Zoysia japonica, 6 identified Zoysia sinica, and 38 different unidentified Zoysia species were subjected to Fourier transform infrared spectroscopy (FT-IR). PCA (principle component analysis) and PLS-DA (partial least square discriminant analysis) from FT-IR spectral data successfully divided the 25 identified turf grasses into two groups, representing good agreement with species identification using molecular markers. PC (principal component) loading values show that the 1,100 ~ 950 cm -1 region of the FT-IR spectra are important for the discrimination of Zoysia species. A dendrogram based on hierarchical clustering analysis (HCA) from the PCA and PLS-DA data of turf grasses showed that turf grass samples were divided into Zoysia japonica and Zoysia sinica in a species-dependent manner. PCA and PLS-DA from FT-IR spectral data of Zoysia species identified and unidentified by molecular markers successfully divided the 49 turf grasses into Z.
    japonica and Z. sinica. In particular, PLS-DA and the HCA dendrogram could mostly discriminate the 47 Z. japonica grasses into two groups depending on their origins (mountainous areas and island area). Considering these results, we suggest that FT-IR fingerprinting combined with multivariate analysis could be applied to discriminate between Zoysia species as well as their geographical origins of various Zoysia species.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of Plant Biotechnology”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 08일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:58 오전