PARTNER
검증된 파트너 제휴사 자료

흉부 X-선 영상에서 밝기값 정규화 및 다중 스케일 폐-집중 패치를 사용한 앙상블 딥러닝 모델 기반의 폐렴 자동 분류 (Automatic Classification of Pneumonia Based on Ensemble Deep Learning Model Using Intensity Normalization and Multiscale Lung-Focused Patches on Chest X-Ray Images)

9 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2022.09
9P 미리보기
흉부 X-선 영상에서 밝기값 정규화 및 다중 스케일 폐-집중 패치를 사용한 앙상블 딥러닝 모델 기반의 폐렴 자동 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 49권 / 9호 / 677 ~ 685페이지
    · 저자명 : 김윤조, 안진서, 홍헬렌

    초록

    소아 흉부 X-선 영상(CXR)은 밝기값이 불규칙하여 정상과 폐렴을 구분하기 어렵다. 또한 딥러닝 모델은 폐의 외부 영역에 잘못 집중하여 CXR을 오분류할 수 있다는 한계가 있다. 본 논문은 CXR 영상에서 밝기값 정규화 및 다중 스케일 폐-집중 패치를 사용한 앙상블 딥러닝 기반 폐렴 자동 분류 방법을 제안한다. 첫째, 불규칙한 폐 내부 밝기값을 개선하기 위해 세 가지 밝기값 정규화 방법을 각각 수행한다. 둘째, 폐 내부에 집중하여 학습하기 위해 폐 영역을 분할하여 관심 영역을 추출한다. 셋째, 다중 스케일 폐-집중 패치를 사용하여 폐렴의 특징을 학습한다. 마지막으로 분류 성능을 향상시키기 위해 어텐션 모듈을 추가한 앙상블 모델을 사용한다. 실험 결과, CLAHE를 적용한 큰 크기의 패치 사용 시 정확도 92%로 원 영상 대비 5%p 향상된 성능을 보였다. 또한 큰 크기와 중간 크기의 패치를 앙상블한 제안 방법이 정확도 93%로 가장 좋은 성능을 보였다.

    영어초록

    It is difficult to classify normal and pneumonia in pediatric chest X-ray (CXR) images due to irregular intensity values. In addition, deep learning model has a limitation in that it can misclassify CXR by incorrectly focusing on the outer part of the lung. This study proposed an automatic classification of pneumonia based on ensemble deep learning model using three intensity normalizations and multiscale lung-focused patches on CXR images. First, to correct for irregular intensity values in internal lungs, three intensity normalization methods were performed respectively.
    Second, to focus on internal lungs, regions of interest were extracted by segmenting lung regions.
    Third, multiscale lung-focused patches were extracted to train the characterization of pneumonia.
    Finally, ensemble modeling with attention module was performed to improve the classification performance. In the experiment, the method using large patches of CLAHE images showed an accuracy of 92%, which was 5% higher than that of original images. Furthermore, the proposed method using an ensemble of large and middle patches showed the best performance with an accuracy of 93%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:33 오전