• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출 (Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images)

9 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2010.04
9P 미리보기
심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 37권 / 4호 / 273 ~ 281페이지
    · 저자명 : 이민진, 홍헬렌

    초록

    본 논문에서는 CT 영상에서 밝기값 분포와 기울기 정보를 고려한 방사선 추적 기반의 좌심실 내외벽 자동 분할 기법을 제안한다. 첫째, 심근 내벽 경계는 임계값 기법과 영역확장법으로 분할하고, 꼭지근을 포함하는 위하여 방사형의 방사선 추적 기법을 이용하여 분할한다. 둘째, 심근 외벽 경계는 적응적 기울기 프로파일 내에 심근의 밝기값과 최대 기울기를 갖는 점을 추출한다. 마지막으로, 타원이나 원의 형태를 유지하기 위하여 내외벽의 잘못된 경계점들을 타원방정식으로 선형 보간하고 B-스플라인을 적용하여 최종 분할된 결과를 추출한다. 제안방법의 평가를 위해 육안평가와 정확성 평가, 수행시간을 측정하였다. 정확성 평가를 위하여 임상의의 수동 분할 결과와 제안 방법 분할 결과 간의 평균거리차이와 중복영역비율을 측정하였다. 실험 결과 평균거리차이는 0.56±0.24mm로 측정되었고, 평균 중복영역비율은 평균 82±4.2%로 측정되었다. 제안 방법을 적용한 수행 시간은 평균 1초로 수행을 완료하였다.

    영어초록

    In this paper, we propose an automatic segmentation method of the endo- and epi- cardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was 0.56+-0.24mm. The overlapping region ratio was 82+-4.2% on average. In all experimental datasets, the whole process of our method was finished within 1 second.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:35 오전