• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법 (Gradient Descent Approach for Value-Based Weighting)

8 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2010.10
8P 미리보기
점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 17권 / 5호 / 381 ~ 388페이지
    · 저자명 : 이창환, 배주현

    초록

    나이브 베이시안 알고리즘은 데이터 마이닝의 여러 분야에서 적용되고 있으며 좋은 성능을 보여주고 있다. 하지만 이 학습 방법은 모든 속성의 가중치가 동일하다는 가정을 하고 있으며 이러한 가정으로 인하여 가끔 정확도가 떨어지는 현상이 발생한다. 이러한 문제를 보완하기 위하여 나이브 베이시안에서 속성의 가중치를 조절하는 다수의 연구가 제안되어 이러한 단점을 보완하고 있다. 본 연구에서는 나이브 베이시안 학습에서 기존의 속성에 가중치를 부여하는 방식에서 한걸음 나아가 속성의 값에 가중치를 부여하는 새로운 방식을 연구하였다. 이러한 속성 값의 가중치를 계산하기 위하여 점진적 하강(gradient descent) 방법을 이용하여 가중치를 계산하는 방식을 제안하였다. 제안된 알고리즘은 다수의 데이터를 이용하여 속성 가중치 방식과 비교하였고 대부분의 경우에 더 좋은 성능을 제공함을 알 수 있었다.

    영어초록

    Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 17일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:08 오후