• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법 (A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold)

14 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2012.10
14P 미리보기
동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 1권 / 1호 / 55 ~ 68페이지
    · 저자명 : 한기태

    초록

    본 논문에서는 영상의 동질성 문턱 값(Homogeneity Threshold: )을 이용한 영상분할방법에서 영상의 과분할 발생을 해결하기 위한 개선된 영상분할 방법을 제안한다.
    을 기반으로 한 영역성장(Region Growth) 알고리듬은 선택된 윈도우의 중심화소만을 사용하기 때문에 과 분할이 발생하였으나, 제안한 방법에서는 선택된 윈도우에 대한 동질성 여부를 조사하여 동질성을 만족할 경우 선택된 윈도우 화소전체를 영역병합에 사용하고 선택 윈도우가 동질성 윈도우를 만족하지 않을 때에는 윈도우의 중심화소를 사용함으로써 영역의 과 분할을 현저하게 줄일 수 있었다.
    제안한 방법의 타당성을 보이기 위하여 기존방법과 동일한 영상을 동일한 조건으로 실험하였으며, 그 결과 제안한 방법은 기존 방법에 비해 영역의 개수를 40% 이상 줄이면서도 시각적으로 영상의 품질에 차이가 없음을 볼 수 있었다. 특히 분할된 영역의 크기순으로 결합한 영상을 가지고 비교 했을 때, 기존방법에서는 분할된 영역의 큰 영역으로부터 1,000개 이상의 영역을 결합하여도 어떠한 영상인지 구분하기가 힘들었으나, 제안한 방법에서는 10개 내외의 영역만 결합하여도 어떠한 이미지인지 식별할 수 있음을 확인할 수 있었다. 따라서 제안한 방법은 특정영상으로부터의 객체 추출이나 정보검색 혹은 해부학이나 생물학 분야의 연구 및 영상 시각화와 애니메이션 등 다양한 분야에서 활용될 수 있을 것으로 기대한다.

    영어초록

    In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold( ).
    The algorithm of the previous image segmentation based on  was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on  .
    In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method.
    Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 17일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:21 오전