• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

화소값의 구간별 양자화 값 상관관계를 이용한 텍스춰 기술자 (Texture Descriptor Using Correlation of Quantized Pixel Values on Intensity Range)

6 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2018.06
6P 미리보기
화소값의 구간별 양자화 값 상관관계를 이용한 텍스춰 기술자
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 11권 / 3호 / 229 ~ 234페이지
    · 저자명 : 복거철

    초록

    텍스춰는 영상을 분류하거나 분할하는데 사용되는 유용한 특징이다. 기존에 제안되었던 LBP는 텍스춰 영상의 지역적인 특징을 간단한 연산을 통해 성공적으로 추출하는 기법으로서 많은 응용 분야에서 높은 성능을 보인 것으로 확인되었지만 오직 화소값의 차이만을 토대로 특징을 기술하기 때문에 잡음에 약하고 특히 이웃화소의 수가 증가함에 따라 특징벡터의 차원이 기하급수적으로 증가하는 문제점으로 인해 멀티스테일 텍스춰 기술자로서 사용하기에는 제약이 크다. 본 논문은 이런 LBP의 단점을 극복하기 위하여 화소값의 범위를 구간별로 양자화하여 양자화영상의 화소값의 상관관계를 3차원 히스토그램으로 표현하는 기법을 제시한다. 이와 같이 3차원 히스토그램을 이용하여 화소값 사이의 상관 관계를 추출하면 특징벡터의 차원이 선형적으로 증가하는 특성을 가지므로 멀티스케일 텍스춰 기술자로 다양하게 응용될 수 있다. 제안하는 방법을 텍스춰 실험영상을 통해 실험한 결과 텍스춰를 분류하는 문제에 있어서 LBP와 비교하여 유의 수준의 성능의 향상을 확인하였다.

    영어초록

    Texture is one of the most useful features in classifying and segmenting images. The LBP-based approach previously presented in the literature has been successful in many applications. However, it’s theoretical foundation is based only on the difference of pixel values, and consequently it has a number of drawbacks like it performs poorly for the images corrupted with noise, and especially it cannot be used as a multiscale texture descriptor due to the exploding increase of feature vector dimension with increase of the number of neighbor pixels. In this paper, we present a method to address these drawbacks of LBP-based approach. More specifically, our approach quantizes the range of pixels values and construct a 3D histogram which captures the correlative information of pixels. This histogram is used as a texture feature. Several tests with texture images show that the proposed method outperforms the LBP-based approach in the problem of texture classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:29 오후