PARTNER
검증된 파트너 제휴사 자료

비알콜성 지방간 초음파 영상에 GLCM과 인공신경망을 적용한 비알콜성 지방간 질환 분류 (Non-alcoholic Fatty Liver Disease Classification using Gray Level Co-Ocurrence Matrix and ArtificialNeural Network on Non-alcoholic Fatty Liver Ultrasound Images)

8 페이지
기타파일
최초등록일 2025.03.10 최종저작일 2023.10
8P 미리보기
비알콜성 지방간 초음파 영상에 GLCM과 인공신경망을 적용한 비알콜성 지방간 질환 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 17권 / 5호 / 735 ~ 742페이지
    · 저자명 : 김지율, 예수영

    초록

    비알콜성 지방간은 심혈관계 질환, 당뇨병, 고혈압 및 신장질환의 발생에 있어 독립적인 위험인자에 해당하며, 최근에는 비알콜성 지방간에 대한 임상적 중요성이 증가하고 있다. 본 연구에서는 비알콜성 지방간 환자의 초음파영상에 대하여 질감분석 방법인 GLCM을 적용하여 특징값을 추출하고자 한다. 추출된 특징값들을 이용한 인공신경망 모델의 적용을 통하여 비알콜성 지방간의 지방침착 정도를 정상 간(normal), 경도 지방간(mild), 중등도 지방간(moderate), 중증 지방간(severe)으로 분류를 하고자 한다. GLCM알고리듬 적용 결과 Autocorrelation, Sum of squares, Sum average, Sum variance 파라미터 값들은 경도 지방간, 중등도 지방간을 거쳐 중증 지방간으로 갈수록 특징값의 평균값이 증가하는 경향성을 나타내었다. 인공신경망 모델의 입력은 비알콜성 지방간질환의 초음파영상에 GLCM 알고리듬을 적용하여 추출한 Autocorrelation, Sum of squares, Sum average, Sum variance의 4개의 파라미터들을 인공신경망 모델의 입력값으로 적용하였다. 비알콜성 지방간질환의 초음파영상에 GLCM 알고리듬을 적용하여 추출한 영상을 인공신경망에 적용하여 분류 정확도를 평가한 결과 92.5%의 높은 정확도를 나타내었다. 이러한 결과를 통하여 비알콜성 지방간 환자의 초음파 영상에 대한 질감 분석 GLCM 연구 시 본 연구의 결과를 기초자료로 제시를 하고자 한다.

    영어초록

    Non-alcoholic fatty liver disease is an independent risk factor for the development of cardiovascular disease, diabetes, hypertension, and kidney disease, and the clinical importance of non-alcoholic fatty liver disease has recently been increasing. In this study, we aim to extract feature values ​​by applying GLCM, a texture analysis method, to ultrasound images of patients with non-alcoholic fatty liver disease. By applying an artificial neural network model using extracted feature values, we would like to classify the degree of fat deposition in non-alcoholic fatty liver into normal liver, mild fatty liver, moderate fatty liver, and severe fatty liver. As a result of applying the GLCM algorithm, the parameters Autocorrelation, Sum of squares, Sum average, and sum variance showed a tendency for the average value of the feature values ​​to increase as it progressed from mild fatty liver to moderate fatty liver to severe fatty liver. The four parameters of Autocorrelation, Sum of squares, Sum average, and sum variance extracted by applying the GLCM algorithm to ultrasound images of non-alcoholic fatty liver disease were applied as inputs to the artificial neural network model. The classification accuracy was evaluated by applying the GLCM algorithm to the ultrasound images of non-alcoholic fatty liver disease and applying the extracted images to an artificial neural network, showing a high accuracy of 92.5%. Through these results, we would like to present the results of this study as basic data when conducting a texture analysis GLCM study on ultrasound images of patients with non-alcoholic fatty liver disease.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:40 오전