PARTNER
검증된 파트너 제휴사 자료

복잡계망 모델을 사용한 강화 학습 상태 공간의 효율적인 근사 (Efficient Approximation of State Space for Reinforcement Learning Using Complex Network Models)

12 페이지
기타파일
최초등록일 2025.03.05 최종저작일 2009.06
12P 미리보기
복잡계망 모델을 사용한 강화 학습 상태 공간의 효율적인 근사
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 6호 / 479 ~ 490페이지
    · 저자명 : 이승준, 엄재홍, 장병탁

    초록

    여러 가지 실세계 문제들은 마르코프 결정 문제(Markov decision problem) 들로 형식화하여 풀 수 있으나, 풀이 과정의 높은 계산 복잡도 때문에 실세계 문제들을 직접적으로 다루는 데 많은 어려움이 있다. 이를 해결하기 위해 많은 시간적 추상화(Temporal abstraction) 방법들이 제안되어 왔고 이를 자동화하기 위한 여러 방법들 또한 연구되어 왔으나, 이들 방법들은 명시적인 효율성 척도를 갖고 있지 않아 이론적인 성능 보장을 하지 못하는 문제가 있었다. 본 연구에서는 문제의 크기가 커지더라도 좋은 성능이 보장되는 자동적인 시간적 추상화 구현 방법에 대해 제안한다. 이를 위하여 네트워크 척도(Network measurements)를 이용하여 마르코프 결정 문제의 풀이 효율과 상태 궤적 그래프(State trajectory graph)의 위상 특성간의 관계를 분석하고, 네트워크 척도들 중 평균 측지 거리(Mean geodesic distance)가 마르코프 결정 문제의 풀이 성능과 밀접한 관계가 있다는 사실을 알아내었다. 이 사실을 기반으로 하여, 낮은 평균 측지 거리를 보장하는 복잡계망 모델(Complex network model)을 사용하여 시간적 추상화를 만들어 나가는 알고리즘을 제안한다. 제안된 알고리즘은 사실적인 3차원 게임 환경을 비롯한 여러 문제에 대해 테스트되었고, 문제 크기의 증가에도 불구하고 효율적인 풀이 성능을 보여 주었다.

    영어초록

    A number of temporal abstraction approaches have been suggested so far to handle the high computational complexity of Markov decision problems (MDPs). Although the structure of temporal abstraction can significantly affect the efficiency of solving the MDP, to our knowledge none of current temporal abstraction approaches explicitly consider the relationship between topology and efficiency. In this paper, we first show that a topological measurement from complex network literature, mean geodesic distance, can reflect the efficiency of solving MDP. Based on this, we build an incremental method to systematically build temporal abstractions using a network model that guarantees a small mean geodesic distance. We test our algorithm on a realistic 3D game environment, and experimental results show that our model has subpolynomial growth of mean geodesic distance according to problem size, which enables efficient solving of resulting MDP.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:41 오전