• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SVM을 이용한 위험모듈 예측 (An Estimation of Risky Module using SVM)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
5 페이지
기타파일
최초등록일 2025.03.05 최종저작일 2009.06
5P 미리보기
SVM을 이용한 위험모듈 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 15권 / 6호 / 435 ~ 439페이지
    · 저자명 : 김영미, 정충희, 김현수

    초록

    안전-필수 분야에 사용되는 소프트웨어의 신뢰도(dependability)를 보장하기 위해 소프트웨어의 테스팅과 확인 및 검증활동이 매우 중요하다. 본 연구에서는 위험수준이 높은 소프트웨어 모듈을 소프트웨어 수명주기 초기에 예측하여, 테스팅과 확인 및 검증 활동에 대한 자원할당을 도울 수 있게 해준다. 다중 클래스 분류를 지원하는 SVM (Support Vector Machine)을 이용하여 소프트웨어 모듈의 잠재위험수준 을 예측한다. 잠재위험수준이 상대적으로 높게 나온 모듈들에 대해 테스팅과 확인 및 검증을 집중적으로 실시함으로써 보다 효과적으로 소프트웨어의 품질을 향상시킬 수 있다. 또한, 원전의 계측제어계통에 사용되는 안전-필수 소프트웨어의 안전성 심사를 위한 대상 모듈을 샘플링할 때 활용할 수 있을 것으로 기대된다.

    영어초록

    Software used in safety-critical system must have high dependability. Software testing and V&V (Verification and Validation) activities are very important for assuring high software quality. If we can predict the risky modules of safety-critical software, we can focus testing activities and regulation activities more efficiently such as resource distribution. In this paper, we classified the estimated risk class which can be used for deep testing and V&V. We predicted the risk class for each module using support vector machines. We can consider that the modules classified to risk class 5 and 4 are more risky than others relatively. For all classification error rates, we expect that the results can be useful and practical for software testing, V&V, and activities for regulatory reviews.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회 컴퓨팅의 실제 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:23 오후