• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

분산커널 기반의 퍼지 c-평균을 이용한음악 데이터의 장르 분류 (Classification of Music Data using Fuzzy c-Means with Divergence Kernel)

7 페이지
기타파일
최초등록일 2025.03.04 최종저작일 2009.05
7P 미리보기
분산커널 기반의 퍼지 c-평균을 이용한음악 데이터의 장르 분류
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - CI / 46권 / 3호 / 1 ~ 7페이지
    · 저자명 : 박동철

    초록

    본 논문은 효율적인 음악 데이터의 분류를 위한 방법으로 분산커널 기반의 퍼지 c-평균을 이용한 분류기 모델을 제안한다. 분산 커널 기반의 퍼지 c-평균은 주어진 오디오 데이터에서 추출된 특징벡터의 평균과 공분산 정보를 동시에 이용하여 기존의 평균값만을 사용하는 방식에 비해 성능을 월등히 향상시킬 수 있는 장점이 있다. 사용된 방식은 확률적 분포로 주어지는 데이터 사이의 거리를 분산거리척도로 측정하고, 복잡한 분류 경계를 단순화 시키는데 효율적인 커널 개념을 사용함으로서 분류의 정확도를 극대화 시킬 수 있는 장점이 있다. 제안하는 분류기의 성능을 평가하기 위하여 고전음악, 컨트리음악, 힙합, 재즈의 4개의 장르 음악데이터를 총 1200개 수집하여 실험을 진행하였다. 실험의 결과 제안된 분산커널 기반의 퍼지 c-평균을 이용하는 분류기는 기존의 방식과 비교하여 분류정확도에서 평균적으로 17.73% - 21.84%의 성능향상을 보여준다.

    영어초록

    An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, the classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate that the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73% - 21.84% on average in terms of classification accuracy.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - CI”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:57 오전