PARTNER
검증된 파트너 제휴사 자료

SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭 (SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors)

11 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.04
11P 미리보기
SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 36권 / 2호 / 73 ~ 83페이지
    · 저자명 : 노충호, 이석룡, 정진완, 김덕환, 김상희

    초록

    본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN (nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80 로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.

    영어초록

    In this paper we propose an object similarity matching method based on shape characteristics of an object in an image. The proposed method extracts edge points from edges of objects and generates a log polar histogram with respect to each edge point to represent the relative placement of extracted points. It performs the matching in such a way that it compares polar histograms of two edge points sequentially along with edges of objects, and uses a well-known k-NN(nearest neighbor) approach to retrieve similar objects from a database. To verify the proposed method, we’ve compared it to an existing Shape-Context method. Experimental results reveal that our method is more accurate in object matching than the existing method, showing that when k=5, the precision of our method is 0.75-0.90 while that of the existing one is 0.37, and when k=10, the precision of our method is 0.61-0.80 while that of the existing one is 0.31. In the experiment of rotational transformation, our method is also more robust compared to the existing one, showing that the precision of our method is 0.69 while that of the existing one is 0.30.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:38 오후