• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천 (Automatic Recommendation of (IP)TV programs based on A Rank Model using Collaborative Filtering)

15 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.03
15P 미리보기
협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 14권 / 2호 / 238 ~ 252페이지
    · 저자명 : 김은희, 표신지, 김문철

    초록

    방송과 융합의 시대로 접어들면서 (IP)TV 단말에서 이용 가능한 프로그램 콘텐츠 수가 급격히 증가 하였다. 이로 인해, 사용자(시청자)가 선호하는 방송 프로그램 콘텐츠로의 접근성이 주요한 사항이 되었다. 본 논문은 유사 사용자 선호도에 기반을 둔 협업 필터링을 이용하여(IP)TV 프로그램을 효율적으로 사용자에게 자동 추천하는 연구에 관한 내용이다. 개인의 시청 프로그램 선호도를 고려하여 방송 프로그램을 추천하기 위해서, 제안하는 추천 시스템의 구성은 오프라인과 온라인 연산으로 구성된다. 오프라인 연산과정에서 (IP)TV 프로그램, 장르, 채널에 대한 개인의 선호도를 묵시적으로 추론 하는 방법을 제시하고, 동적 퍼지 클러스터링 방법을 사용하여 각 개인의 선호도에 따라 사용자들을 그룹 짓되, 특징 벡터를 장르와 채널에 대한 선호도로 결합하여 사용하는 방법을 제시한다. 또한, (IP)TV 단말에 로그인 한 활동 사용자에게, 높은 정확도로 선호 프로그램을 추천하기 위해서, 활동 사용자와 관심 시청 프로그램이 유사한 사용자들을 유사도 측정 방법을 사용하여 한 번 더 추출하고, 이 추출된 유사 취향 사용자들의 선호 (IP)TV 프로그램들에 대해, EPG를 이용하여 현재 방송되지 않는 프로그램들을 제외시킨다. 마지막 단계에서는 추천 후보 프로그램들에 대해 본 논문에서 제안하는 순위 정렬 모델을 이용하여 추천 우선순위를 결정하여 제시한다. 특별히, 본 논문은 BM(Best Match) 알고리즘을 확장하여 개인 선호도를 고려한 순위 정렬 모델을 제시한다. 실험을 통해, 본 논문에서 제안한 프로그램 자동 추천 알고리듬은 2,441명의 사용자에 대해 5개의 프로그램을 추천하였을 경우, 62.1%의 예측 정확도를 나타내었다.

    영어초록

    Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user’s preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user’s preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user’s preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 10일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:43 오전