• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

연관 웹 페이지 검색을 위한 e-아크 랭킹 메저 (e-Cohesive Keyword based Arc Ranking Measure forWeb Navigation)

8 페이지
기타파일
최초등록일 2025.03.02 최종저작일 2009.02
8P 미리보기
연관 웹 페이지 검색을 위한 e-아크 랭킹 메저
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 36권 / 1호 / 22 ~ 29페이지
    · 저자명 : 이우기, 이병수

    초록

    웹은 사용자에게 제품이나 정보를 제공할 수 있는 가장 커다란 매체로 성장하였으며, 또한 사용자에게는 필요 이상의 정보를 얻게 해주고 있다. 웹은 다량의 관련 정보들을 여러 웹 페이지들을 통해 표현하고 있으며, 현재 검색엔진들은 키워드들에 관련된 단일 페이지들만을 리스트화하여 보여주고 있다. 근본적으로 이러한 방법들로는 관련된 정보를 가지고 있는 페이지들의 쌍 및 연관된 웹 페이지들의 집합을 구조화하여 제공할 수 없다. 웹은 하나의 웹 페이지에 모든 관련 정보를 담는 범위를 넘어 관련된 정보 페이지들을 하이퍼링크로 서로 연결한 일련의 정보로 인식되고 있다. 따라서 본 논문에서는 새로운 링크 가중치 기반 검색 기법으로서 e-아크 메저에 관하여 제안하고자 하며, 이는 사용자가 입력한 키워드들과 관련된 페이지의 집합을 웹 사이트 안에서 찾아내는 연관 검색에 효과적이라는 것을 보이고, 실험을 통해 기존의 메저들 보다 그 효과성을 우월하다는 점을 입증하였다.

    영어초록

    The World Wide Web has emerged as largest media which provides even a single user to market their products and publish desired information; on the other hand the user can access what kind of information abundantly enough as well. As a result web holds large amount of related information distributed over multiple web pages. The current search engines search for all the entered keywords in a single webpage and rank the resulting set of web pages as an answer to the user query. But this approach fails to retrieve the pair of web pages which contains more relevant information for users search. We introduce a new search paradigm which gives different weights to the query keywords according to their order of appearance. We propose a new arc weight measure that assigns more relevance to the pair of web pages with alternate keywords present so that the pair of web pages which contains related but distributed information can be presented to the user. Our measure proved to be effective on the similarity search in which the experimentation represented the e-arc ranking measure outperforming the conventional ones.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 14일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:09 오후