• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

후방향 전진 추론을 이용한 RDF 모델의 효율적인 변경 탐지 (Efficient Change Detection between RDF Models Using Backward Chaining Strategy)

9 페이지
기타파일
최초등록일 2025.03.02 최종저작일 2009.02
9P 미리보기
후방향 전진 추론을 이용한 RDF 모델의 효율적인 변경 탐지
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 15권 / 2호 / 125 ~ 133페이지
    · 저자명 : 임동혁, 김형주

    초록

    RDF(Resource Description Framework)는 시맨틱 웹에서 메타 정보를 기술하는 온톨로지 언어로 많이 사용되고 있다. 온톨로지는 실세계에 대한 모델링을 기반으로 하기 때문에 끊임없이 갱신이 발생한다. 이런 갱신을 찾고 분석하는 일은 지식 관리 시스템에서 핵심이 된다. 기존의 RDF 모델에 대한 변경 탐지 기법들은 구조적 변경에 초점을 두었으나 RDFS 함의 규칙을 적용하여 좀 더 작은 크기의 변경 부분을 찾는 연구들이 소개되고 있다. 하지만 RDF 모델의 추론은 데이타 크기와 시간의 증가에 영향을 미친다. 본 논문에서는 RDFS 함의 규칙을 효율적으로 사용하는 변경 탐지 기법을 제안한다. 제안된 기법은 후방향 전진 추론 기반으로 모델 일부분에만 추론을 적용하여 변경 내용을 계산한다. 실제 사용하는 RDF 데이타들을 사용하여 기존의 변경 탐지 기법과의 비교 실험을 통해 성능을 향상시킬 수 있음을 보인다.

    영어초록

    RDF is widely used as the ontology language for representing metadata on the semantic web. Since ontology models the real-world, ontology changes overtime. Thus, it is very important to detect and analyze changes in knowledge base system. Earlier studies on detecting changes between RDF models focused on the structural differences. Some techniques which reduce the size of the delta by considering the RDFS entailment rules have been introduced. However, inferencing with RDF models increases data size and upload time. In this paper, we propose a new change detection using RDF reasoning that only computes a small part of the implied triples using backward chaining strategy. We show that our approach efficiently detects changes through experiments with real-life RDF datasets.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회 컴퓨팅의 실제 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:40 오후